Electronic Supporting Information

Synthesis and Investigation of Novel Thiophene Derivatives

Containing Heteroatom linkers for Solid State Polymerization

Chuong Tusy, Lili Huang, Jingpeng Jin, Jiangbin Xia*

College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China

Corresponding author. E-mail: jbxia@whu.edu.cn

Tel & Fax: 86-27-67856707

Contents

- 1. Experimental details and scheme of monomers synthesis (Scheme S1).
- 2. ¹H-NMR and ¹³C-NMR spectra of the compounds.(Fig. S1- Fig. S10)
- 3. Absorbance spectra of the monomers, polymers by SSP and dedoped polymers

by hydrazine treatment (fresh made). (Fig. S11.)

- 4. TGA curves for P(C-EDOT), P(Si-EDOT) and P(P-EDOT) (Fig. S12.)
- 5. Conversion percentage vs. reaction time of SSP (Fig. S13.)

6. Crystal structures (Fig. S14- Fig. S16.)

7. Details of the Data Collection and Structure Refinements for All Complexes

Reported in This Work (Table S1)

- 8. Polymers' conductivies (Table S2)
- 9. Reference for supporting information

1.Experimental details

1.1 Materials. Chemicals were purchased from Wuhan Shenshi Chemicals Co., Ltd. and were used without further purification unless otherwise noted. EDOT was purchased from J & K. Diethyl ether anhydrous solvent was distilled from commercial diethyl ether with CaH₂. 2-Bromo-3,4-ethylenedioxythiophene¹ was synthesized according to previous our report. 5-Iodo-2,3-dihydro-thieno[3,4-b][1,4]dioxine² synthesized similar was to 2-bromo-3,4-ethylenedioxythiophene except that

2,5-diiodo-3,4-ethylenedioxythiophene was used during reduction by n-butyllithium.

1.2. Monomers synthesis and solid state polymerization.

Scheme S1. Synthesis of the monomers.

Bis(7-bromo-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl) methane (1, Br₂-C-EDOT).

Monomer **1** (**Br**₂-**C-EDOT**) was synthesized in accordance with previous method³ shown in **Scheme S1**. To a stirred solution of zinc chloride in hydrochloric acid between -8°C and -10°C, 2-bromo-3,4-ethylenedioxythiophene was added over several minutes. Formaldehyde (37%) was added dropwise over 60 min while maintaining the temperature around -10°C. The reaction mixture was stirred for 60 min while maintaining this temperature and then quenched with water and extracted with ether. The organic extract was washed with 5% sodium bicarbonate solution, dried over magnesium sulfate, and the solvent was evaporated. Purification by column chromatography (silica gel, light petroleum-CH₂Cl₂, 2 : 1) afforded white solid **1** (60%). ¹H NMR: δ (CDCl₃) 4.25 (m, 2 H); 4.22 (m, 2 H); 3.89 (s, 2 H). ¹³C NMR: δ (CDCl₃) 139.7, 137.7, 114.9, 84.4, 65.3, 64.7, 22.2. CI-MS: Calcd, 451.8; found (M + 2)⁺, 453.8.

Bis-(7-bromo-2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-dimethyl-silane (2, Br₂-Si-EDOT)

Monomer **2** (**Br**₂-**Si-EDOT**) was synthesized by modification of previous method⁴ Anhydrous THF (30 ml) was slowly added dropwise to a solution of lithium diisopropylamide (prepared by addition of *n*-butyllithium to diisopropylamine, 10 mmol), the temperature being maintained around -15 °C. The reaction mixture was cooled to -60°C, and a solution of 2-bromo-3,4-ethylenedioxythiophene (2.21 g, 10 mmol) in anhydrous THF (10 ml) was slowly added dropwise, the temperature being maintained around -50 °C. Then the reaction mixture was warmed up to -20 °C and stirred at this temperature for 15 min. After that, the reaction mixture was cooled to -78 °C and dichlorodimethylsilane (0.65 g, 5 mmol) was added, then the cooling bath was removed and the temperature was raised to room temperature. After completion of the reaction, the mixture was poured into a mixture of ice water (50 ml) containing 2 mL 1 M HCl and freshly distilled ether (100 ml). The organic layer was washed with water and dried with Na₂SO₄. Purification by column chromatography (silica gel, light petroleum-CH₂Cl₂, 2 : 1) afforded colorless crystal **2** (50%). ¹H NMR: δ (CDCl₃) 4.24 (m, 2 H); 4.21 (m, 2 H); 0.55 (s, 6 H). ¹³C NMR: δ (d-DMSO) 147.6, 140.9, 107.6, 91.9, 64.5, -1.55. Anal. Calcd For C₁₄H₁₄Br₂O₄S₂Si: C, 33.75%; H, 2.83%. Found: C, 32.95%; H, 2.96%.

Bis-(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-dimethyl-silane (3, Si-EDOT)

To a solution of EDOT (2.10 g, 14.8 mmol) dissolved in 50 ml of THF under argon was added 6.2 mL (14.8 mmol) of *n*-BuLi (2.4 M) dropwise. After stirring for 1 h at room temperature, the mixture was cooled to -78 °C. Dichlorodimethylsilane (0.98 g, 7.6 mmol) was added dropwise and the mixture was stirred for a further 3 h at -78 °C followed by 21 h at room temperature. The mixture was then poured into 100 ml of water and the product was extracted using 2 × 100 ml portions of CH₂Cl₂. The organic layers were combined and dried over MgSO₄. After evaporation of the solvent, the product was a colorless crystalline solid (1.90 g, yield 75%). ¹H NMR (CDCl₃, ppm) : 6.58 (s, 2H), 4.19 (m, 8H), 0.58 (s, 6H), which is consisted with reported result.¹²

Bis-(7-iodo-2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-dimethyl-silane (4, I₂-Si-EDOT)

To a solution of **3** (0.67 g, 2 mmol) in anhydrous THF at -78 °C was added *n*-BuLi (2.4 M in hexane; 1.8 mL, 4.3 mmol) in THF (10 mL). The reaction mixture was allowed to warm to 0 °C for 30 min and cooled to -78 °C, and iodine crystals (1.1 g, 4.2 mmol) were added in one portion. The reaction mixture was allowed to warm to 20 °C overnight, the solvent was removed in vacuum, and the residue was taken up in CHCl₃. After washing with KI solution (to remove excess iodine) and water, the organic layer was concentrated in vacuum and purified by flash chromatography on silica eluting with petroleum /CH₂Cl₂ (2:1 v/v), followed by recrystallization from EtOH to give pure **4** as light-yellow crystals (0.71 g, 60%),¹H NMR: δ (CDCl₃) 4.24 (m, 2 H); 4.20 (m, 2 H); 0.54 (s, 6 H). ¹³C NMR: δ (CDCl₃) 147.1, 145.0, 114.8, 65.2, 64.7, 56.2, -1.37. Anal. Calcd For C₁₄H₁₄I₂O₄S₂Si: C, 28.39%; H, 2.38%. Found: C, 27.78%; H, 2.21%.

Bis-(7-bromo-2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-phenyl-phosphane (5, Br₂-P-EDOT)

The compound was synthesized by a similar procedure to **2**. Dichlorophenyl phosphine (0.89 g) was added in place of dichlorodimethylsilane. Yield: 2.57 g (40%); ¹H NMR: δ (CDCl₃) 7.8-7.9 (m, 2H), 7.6 (d, 1H), 7.5(m, 2H), 4.24-4.26 (m, 4 H). ¹³C NMR: δ (d-DMSO) 146.4, 146.2, 140.6, 134.8, 134.7, 131.8, 131.6, 129.4, 128.8, 128.7, 92.5, 64.7. Anal. Calcd For C₁₈H₁₃Br₂O₄PS₂: C, 39.44%; H, 2.39%. Found: C, 39.38%; H, 2.31%.

Bis-(7-iodo-2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-phenyl-phosphane (6, I_2 -P-EDOT)

The synthesized similar procedure compound was by а to 5. 5-Iodo-2,3-dihydro-thieno[3,4-b][1,4]dioxine added place of was in 5-bromo-2,3-dihydro-thieno[3,4-b][1,4]dioxine. Yield: 40%. ¹H NMR: δ (CDCl₃) 7.3-7.5 (m, 5H), 4.24-4.26 (m, 4 H). ¹³C NMR: δ (d-DMSO) 146.1, 145.9, 144.5, 135.2, 131.7, 131.5, 129.2, 128.7, 111.9, 111.6, 64.6, 59.5. ESI-MS: Calcd, 642.2; found $(M + 2)^+$, 644.6. Anal. Calcd For $C_{18}H_{13}I_2O_4PS_2$: C, 33.66%; H, 2.04%. Found: C, 34.2%; H, 2.26%.

1.2. General solid state polymerization

In a closed vial, the brominated or iodinated compounds (300 mg) were incubated at 60° C or 80° C, respectively, for 2-96 h. The grounded polymers were additionally dried in vacuum at 80° C overnight, then stirred with hydrazine hydrate (50% aqueous solution, in CH₃OH) overnight, filtered, and washed with CH₃OH and vacuum drying afforded a nearly fully dedoped respective polymers.

1.3. Other characterizations

IR spectra for the characterization of the resulted polymers were recorded on a Perkin-Elmer FTIR spectrometer. Absorption spectra were measured on a Unicam UV 300 spectrophotometer at wavelengths from 300 to 1000 nm. Monomers deposited on fluorine doped tin oxide (FTO) substrates or slide glasses were prepared by spin-coating or drop-casting with 0.5-3 wt% of CHCl₃ monomers solution. These

monomer coated substrate were employed for SSP (80° C for I₂-P-EDOT while 60° C for others) and resulted polymers or polymer/FTO substrates were used for XRD, UV-Vis and as working electrode for electrochemical measurements. For the three-electrode electrochemical measurements in 0.1 M LiClO₄ in acetonitrile, a 1cm² area of FTO/polymer substrate, platinum foil, and Ag/AgCl served as the working, counter, and reference electrodes, respectively (CH Instruments 604D electrochemical system). X-ray diffraction (XRD) patterns were obtained by Bruker D8 advanced X-ray diffractometer by using Cu-Ka radiation at rt. Thermogravimetric analysis (TGA) data were obtained from a SETSYS 16 with a heating rate of 10 °C/min in a nitrogen atmosphere. The surface morphologies of monomers and SSP polymers were analyzed by using field emission scanning electron microscopy (JEOL, JSM-6700F). Conductivity of the polymers in compressed pellets were measured by a TRS-9 (4-probe, Guangzhou) four-probe-type resistance meter and the results were summarized in Table S2 (see in the Supporting Information).

2. ¹H-NMR and ¹³C-NMR spectra of the compounds

Bis-(7-iodo-2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-dimethyl-silane (4)

FigureS6. 13 CNMR(CDCl_3)

Bis-(7-iodo-2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-dimethyl-silane (4)

Bis-(7-bromo-2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-phenyl-phosphane (5)

150 100 50 0 [ppm]

3. Absorbance spectra of the monomers, polymers by SSP and dedoped polymers

Figure S11. Absorbance spectra of the monomers, polymers by SSP and dedoped polymers by hydrazine treatment (fresh made).

4. TGA curves

Figure S12. TGA curves for P(C-EDOT), P(Si-EDOT) and P(P-EDOT)

5. Conversion percentage vs. reaction time of SSP

Figure S13. Conversion percentage vs. reaction time of SSP of examined monomers

at 60 °C.

6. Crystal structures

Figure S14. Single-crystal X-ray structure of compound I₂-Si-EDOT (4). Hydrogen atoms are omitted for clarity: I, purple; S, yellow and C, Si gray.

Figure S15. Single-crystal X-ray structure of compound I_2 -P-EDOT (6). Hydrogen atoms are omitted for clarity: I, purple; S, yellow; P, yellowish brown and C, gray.

Figure S16. Single-crystal X-ray structure of compound Br₂-Si-EDOT (**2**). Hydrogen atoms are omitted for clarity: Br, red; S, yellow and C, gray.

7. Details of the Data Collection and Structure Refinements for All Complexes

Table S1 Details of the Data Collection and Structure Refinements for AllComplexes Reported in This Work

parameter	Br ₂ -C-EDOT	I ₂ -Si-EDOT	I ₂ -P-EDOT	Br ₂ -Si-EDOT
empirical formula	$C_{13}H_{10}Br_2O_4S_2$	$\begin{array}{c} C_{14}H_{14}I_2O_4S_2S\\ i\end{array}$	$C_{18}H_{13}I_2O_4S_2P$	$C_{14}H_{14}Br_2O_4S_2Si$
fw	454.15	592.26	642.17	498.28
cryst syst	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic
space group	P2(1)/c	Iba2	P2(1)/c	Pbca
a (Å)	12.665(3)	16.903(8)	14.6939(12)	13.2636(18)
b (Å)	8.8588(19)	28.697(13)	9.2288(7)	10.1957(13)
c (Å)	14.424(3)	8.005(4)	15.8097(12)	27.784(4)
α (deg)	90	90	90	90
β (deg)	110.803(3)	90	104.924(1)	90
γ (deg)	90	90	90	90
V (Å ³)	1512.8(5)	3883(3)	2071.6(3)	3757.3(9)
Ζ	4	8	4	8
D _{calcd} (g/cm ³)	1.994	2.026	2.059	1.762
cryst size (mm ³)	0.32×0.22×0.20	0.29×0.22×0.20	0.3×0.29×0.28	0.29×0.28×0.26
diffractometer	SMART CCD	SMART CCD	SMART CCD	SMART CCD
F(000)	888	2240.0	1224	1936.0
T (K)	296(2)	296(2)	296(2)	293(2)
өтах	26.5	26.00	26.50	26.50
reflns collected	9083	11749	13288	23315
indep reflns	3134	3775	4288	3895
param refined	191	210	245	210
R_1, wR_2	0.0643, 0.2005	0.0741, 0.2056	0.0253, 0.0532	0.0517, 0.1223
GOF (F2)	1.054	1.050	1.019	1.01

8. Polymers conductivies

Table S2 Three polymers' conductivies

Polymers	Thickness (µm)	Resistivity ($\Omega \cdot cm$)	Conductivity (s/cm)
P(C-EDOT)	190	10^{6}	10 ⁻⁶
P(Si-EDOT)	180	54	0.019
P(P-EDOT)	200	10 ⁷	10 ⁻⁷

9. Reference for supporting information

- a) Y. Yin, Z. Li, J. Jin, C. Tusy and J. Xia, *Synth. Met.*, 2013, 175, 97.; b) M.
 Belletête, S. Beaupre, J. Bouchard, P. Blondin, M. Leclere and G. Durocher, *J. Phys. Chem. B*, 2000, 104, 9118.
- V. Lemau de Talance, M. Hissler, L-Z. Zhang, T. Karpati, L. Nyulaszi, D. Caras-Quintero, P. Baeuerle and R. Reau, *Chem. Commun.*, 2008, 19, 2200.
- 3. a) Y. L. Gold'faarb and Y. L. Danyushevsky, *Bull. Acad. Sci. USSR*, 1956, 1395.
 b) K. J. Hoffmann, L. Knudsen, E. J. Samuelsen and P. H. J. Carlsen, *Synth. Met.*, 2000. 114, 161.
- S. Ponomarenko, A. Muzafarov, O. Borshchev, E. Vodopyanov, N. Demchenko and V. Myakushev, *Russ. Chem. Bull .Int. Ed.*, 2005, 54, 684.