Azaindole-1,2,3-triazole in a tripod for selective sensing of chloride, dihydrogenphosphate and ATP under different conditions

Kumaresh Ghosh,^{*a} Debasis Kar,^b Soumen Joardar,^b Asmita Samadder^b and Anisur Rahaman Khuda-Bukhsh^b

Departments of Chemistry^a and Zoology^b, University of Kalyani, Kalyani, Nadia-741235, India,

Email: ghosh k2003@yahoo.co.in

Figure 1S. Absorbance spectra (a) and emission spectra (b) of 2 ($c = 5.73 \times 10^{-5} \text{ M}$) in different solvents.

Figure 2S. Change in emission of 1 ($c = 5.02 \times 10^{-5}$ M) upon addition of a) F⁻ (b) Br⁻ (c) I⁻ (d) P₂O₇⁴⁻ (e) HSO₄⁻ (f) ClO₄⁻ (g) HP₂O₇³⁻ (h) AcO⁻ (i) NO₃⁻ in CH₃CN containing 0.01% DMSO [changes in Figs. a, d and g are irregular].

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Figure 3S. Change in absorbance of 1 ($c = 2.51 \times 10^{-5}$ M) upon addition of a) F⁻ (b) Br⁻ (c) I⁻ (d) P₂O₇⁴⁻ (e) HSO₄⁻ (f) ClO₄⁻ (g) HP₂O₇³⁻ (h) AcO⁻ (i) NO₃⁻ in CH₃CN containing 0.01% DMSO.

Figure 4S. UV-vis Job plots for **1** with (a) $H_2PO_4^-$ and (b) Cl^- ions in CH_3CN containing 0.01% DMSO ([H] = [G] = 5.42 x 10⁻⁵ M).

Figure 5S. Non linear plots for binding constants of **1** with (a) $H_2PO_4^-$ and (b) Cl⁻ in CH₃CN containing 0.01% DMSO.

Figure 6S. Partial ¹H NMR (400 MHz) of **1** ($c = 4.63 \times 10^{-3}$ M) in (a) CD₃CN containing 2% d₆-DMSO and (b) in d₆-DMSO.

Figure 7S. Change in fluorescence ratio of **1** ($c = 5.07 \times 10^{-5}$ M) at 370 nm upon addition of 15 equiv. amounts of different guests in DMSO.

Figure 8S. Partial ³¹P NMR (400 MHz) of **1** ($c = 4.68 \times 10^{-3}$ M) in (A) a. absence, b. presence of 1 equiv. amount of TBAH₂PO₄ in CD₃CN containing 4% d₆-DMSO; (B) a. absence, b. presence of 1 equiv. amount of TBAH₂PO₄ in d₆-DMSO.

Figure 9S. Partial ¹H NMR (400 MHz) of **1** ($c = 5.96 \times 10^{-3}$ M) in presence and absence of 1 equiv. amount of ATP in d₆-DMSO: D₂O (1:1, v/v).

Figure 10S. Non linear binding constant plot for **1** with ATP in CH₃CN: H₂O (1:1, v/v) at pH = 7.3 containing10mM HEPPES buffer.

Figure 11S. UV-VIS Job plot for **1** with ATP in CH₃CN: H₂O (1:1, v/v) at pH = 7.3 containing10mM HEPPES buffer ($[H] = [G] = 4.25 \times 10^{-5}$ M).

Figure 12S. MTT assay for receptor 1.

¹H NMR (400 MHz, d₆-DMSO)

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2014

¹³C NMR (100 MHz, d₆-DMSO)

Mass

¹H NMR (400 MHz, d₆-DMSO)

¹³C NMR (100 MHz, d₆-DMSO)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Mass

