Functional noble metal nanostructures involving pyrene-conjugated-hyaluronan stabilised reduced graphene oxide

Fei Zhang,^{a,b} Faizah Md Yasin,^c Xianjue Chen,^c Jingxin Mo,^c Colin L.

Raston^{*^b} and Hongbin Zhang^{*^a}

a Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: hbzhang@sjtu.edu.cn; Tel: +86 21 54745005; b Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park SA 5042, Australia. E-mail: colin.raston@flinders.edu.au; Tel: +61 88201 7958 c Centre for Strategic Nano-Fabrication, School of Chemistry and Biochemistry, The University of Western Australia, Crawley,WA 6009, Australia

Figure S1: (A) TEM and (B) HRTEM images of Au2-Py-HA-RGO.

Figure S2: UV-Vis spectra for Py-HA-RGO, Au1-Py-HA-RGO, and Au2-Py-HA-RGO.

Figure S3: TEM image of the product after UV irradiation of a mixture of RGO and $HAuCl_4$ (0.02 mM) at pH 12 for 2 hours (wavelength 255 nm).

Figure S4: Samples (A) and UV-Vis spectra (B) of 0.02 mM HAuCl₄ solution at pH 12 in the presence or absence of Py-HA (1 mg/mL) after UV irradiation (right sample) for 2 hours (wavelength 255 nm).

Figure S5: TEM images of the product formed using 0.02 mM HAuCl_4 solution at pH 12 in the presence of Py-HA (1 mg/mL) after UV irradiation for 2 hours (wavelength

255 nm).

The experiments were as follows. HAuCl₄ was added to the solution with or without Py-HA. The pH of the solutions (0.02 mM HAuCl₄ with or without 1 mg/mL Py-H) were adjusted to pH 12, and then irradiated by UV light with the wavelength at 255 nm for 2 hour. The final solutions are shown in Figure S4. The solution with Py-HA changed from colourless to pink, indicating the formation of gold nanoparticles. The solution without Py-HA became slightly darkened, which may due to small amounts of large gold particles reduced from HAuCl₄ under UV irradiation. In addition, the UV-Vis spectra of these solutions show dramatically different features, beyond the characteristic absorption band at around 520 nm for surface plasmon vibration for gold nanoparticles.¹ The absorption from 250 to 400 nm is attributed to the pyrene moiety of Py-HA. Without Py-HA, there was only one band at ca. 240 nm, reflecting the absorption of Au³⁺ species.² Figure S5 shows the gold nanoparticles < 10 nm obtained from 0.02 mM HAuCl4 solution at pH 12 in the presence of Py-HA (1 mg/mL) after UV irradiation (wavelength 255 nm) for 2 hours. The shape and size of the nanoparticles is consistent with that of Au1-Py-HA-RGO. The results show the role of Py-HA in promoting the photoreduction of the Au(III) precursor, and stabilizing the resulting Au nanoparticles, as for earlier reports on the utility of HA itself.^{1, 2}

Figure S6: TEM images of Py-HA-RGO sheet decorated with Ag nanostructure (A and B)

Figure S7: UV-Vis spectra for Py-HA-RGO decorated with Ag nanostructures.

S6

Figure S8: TEM image of the composite material formed after bubbling hydrogen gas through a mixture of RGO and H_2PdCl_4 (0.2 mM) for 20 minutes.

Figure S9: TEM images of Py-HA-RGO sheets decorated with Pt nanostructures.

Figure S10: Cyclic voltammograms of the as-prepared Au1-Py-HA-RGO (A) and Au2-Py-HA-RGO (B)-modified GCEs in N₂-saturated 0.1 M PBS (pH 7.0) with different concentrations (0, 1, 2, 3, 4, 6) mM of H_2O_2 . Scan rate: 50 mV/s.

S9 Linear regression equations of modified GCEs for amperometric response for H_2O_2

Rang from 0.5 to 50 μ M for H₂O₂ concentration

Au1-Py-RGO/GCE: $I(\mu A)=0.12 C_{H_{2}O_{2}}(\mu m)+0.2$ (Correlation coefficient: 0.998) Au2-Py-RGO/GCE: $I(\mu A)=0.072 C_{H_{2}O_{2}}(\mu m)+0.24$ (Correlation coefficient: 0.998) **Rang from 50 to 50000 µM for H_2O_2 concentration** Au1-Py-RGO/GCE: $I(\mu A)=0.038 C_{H_{2}O_{2}}(\mu m)+4.49$ (Correlation coefficient: 0.997) Au2-Py-RGO/GCE: $I(\mu A)=0.0078 C_{H_{2}O_{2}}(\mu m)+3.27$ (Correlation coefficient: 0.998) S10 Comparison of the performance of the prototype H_2O_2 biosensor.

Table S1 Comparison of the performance of the prototype H_2O_2 biosensor relative to those of other enzymatic and non-enzymatic biosensors

Electrode	Respond	Linear	Stability ^a	Reference
	time(s)	range(µM)		
Hb/Graphene-Chitosan Film/GCE	Within 5	6.5-230	80.1% for 14 days	3
Mb/GNs-Nafion/ GCE	Within 5	1.5-90	93% for 50 days	4
HRP/Polyion Cmplex Membrane /GCE	Within 15	0.5-10	80% for 30 days	5
Hb/Titania Sol-gel Film/GCE	Within 5	0.5-54	89% for 80 days	6
GNs/silicon Sol-gel/GCE	Within 5	2.5-45	Stable for one week	7
GNs/GO/GCE	Within 6	0.5-50	NA	8
Au1-Py-HA-RGO/GCE	Within 4	0.5-5000	95% for 30 days	This paper

GNs: Gold nanoparticles; Mb: myoglobin; GO: graphene oxide; Hb: Hemoglobin;

HRP: horseradish peroxidase

a: Stability defined as the percent of retaining the initial current response of the biosensor stored in PBS at 4° C for some days.

References

- 1. M. M. Kemp, A. Kumar, S. Mousa, T.-J. Park, P. Ajayan, N. Kubotera, S. A. Mousa and R. J. Linhardt, *Biomacromolecules*, 2009, **10**, 589-595.
- 2. N. Q. Hien, D. Van Phu, N. N. Duy and L. A. Quoc, *Carbohydr. Polym.*, 2012, **89**, 537-541.
- 3. H. Xu, H. Dai and G. Chen, *Talanta*, 2010, **81**, 334-338.
- 4. W. Yang, Y. Li, Y. Bai and C. Sun, Sens. Actuators, B, 2006, 115, 42-48.

- 5. S. Yabuki, F. Mizutani and Y. Hirata, Sens. Actuators, B, 2000, 65, 49-51.
- 6. J. Yu and H. Ju, Anal. Chim. Acta, 2003, 486, 209-216.
- 7. G. Maduraiveeran and R. Ramaraj, J. Electroanal. Chem., 2007, 608, 52-58.
- 8. Y. Fang, S. Guo, C. Zhu, Y. Zhai and E. Wang, *Langmuir*, 2010, **26**, 11277-11282.