Supporting Information

Efficient *ipso*-nitration of arylboronic acids with iron nitrate as the nitro source

Min Jiang,^{*a,b*} Haijun Yang,^{*a,b*} Yong Li,^{*a,b*} Zhiying Jia^{*b*} and Hua Fu^{*b*}

^a Beijing Key Laboratory for Analytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. Fax: (+86) 10-6278897; E-mail: cyhj@, tsinghua.edu.cn

^b Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Table of contents

General experimental procedures	P2
General procedure for synthesis of compounds 2a-v	P2
The characterization data of compounds 2a-v	P2
EPR measurement	P7
References	P8
The ¹ H and ¹³ C NMR spectra of compounds 2a-v	P9

General experimental procedures

All reagents and solvents were obtained from commercial suppliers and used without further purification. Fe(NO₃)₃·9H₂O was purchased from Sigma-Aldrich, and other reagents were purchased from Beijing Ouhe Technology Ltd. Co.. All reagents were weighed and handled in air at room temperature. Flash chromatography was performed on silica gel (200 \sim 300 mesh). Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded using tetramethylsilane (TMS) in solvent of CDCl₃ as the internal standard (¹H NMR: TMS at 0.00 ppm, CHCl₃ at 7.24ppm, ¹³C NMR: CDCl₃ at 77.0ppm) or using tetramethylsilane (TMS) in the solvent of DMSO-*d*₆ as the internal standard (¹H NMR: TMS at 0.00 ppm, DMSO at 2.50 ppm; ¹³C NMR: DMSO at 40.0ppm).

General procedure for synthesis of nitroarenes (2a-v)

A 10 mL schlenk tube equipped with a magnetic stirrer, $Fe(NO_3)_3 \cdot 9H_2O$ (0.5 mmol, 202 mg), aromatic boronic acid (1 mmol), toluene (1.5 mL) were added to the tube, and the tube with an N₂ ballon (1 atm) was sealed and put into a pre-heated oil bath at 80°C for 18 h. After the resulting solution was cooled to room temperature, toluene was removed by a vacuum, and the residue was purified by a column chromatography on silica gel to provide the desire product.

The characterization data of compounds 2a-v

Nitrobenzene (2a).¹ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow oil. Yield 92% (113 mg). ¹H NMR (CDCl₃, 600 MHz) δ 8.16 (d, 2H, *J* = 7.6 Hz), 7.68 (t, 1H, *J* = 7.6 Hz), 7.52 (t, 2H, *J* = 7.6 Hz). ¹³C NMR (CDCl₃, 100 MHz) 147.7, 134.3, 128.9, 122.9. GC-MS 123.1.

4-Nitrotoluene (2b).¹ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 92% (126.1 mg), mp 51°C. 1H NMR (CDCl₃, 600 MHz) δ 8.08 (d, 2H, *J* = 8.7 Hz), 7.68 (t, 1H, *J* = 7.6 Hz), 7.52 (t, 2H, *J* = 7.6 Hz). ¹³C NMR (CDCl₃, 100 MHz) 147.7, 134.3, 128.9, 122.9.

GC-MS m/z 137.1.

2, 6-Dimethyl-1-Nitrobenzene (2c).² Eluent: Ethyl acetate/petroleum ether (1:100). Colorless oil. Yield 60% (90.6 mg). 1H NMR (CDCl₃, 600 MHz) δ 7.23 (t, 1H, *J* = 7.33 Hz), 7.09 (d, 2H, *J* = 7.33 Hz). ¹³C NMR (CDCl₃, 100 MHz) 152.03, 130.04, 129.52, 128.9, 17.46. GC-MS m/z 151.2.

1-Isopropyl-4-Nitrobenzene (2d).³ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow oil. Yield 88% (145.4 mg). 1H NMR (CDCl₃, 600 MHz) δ 8.06 (d, 2H, *J* = 8.7 Hz), 7.29 (d, 2H, *J* = 8.7 Hz), 2.94 (m, 1H), 1.2 (d, 2H, *J* = 6.87 Hz). ¹³C NMR (CDCl₃, 100 MHz) 155.7, 145.4, 126.4, 122.8, 33.4, 22.7. GC-MS m/z 165.2.

3-Nitroanisole (2e).¹ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 87% (133.2mg), mp 34°C. 1H NMR (CDCl₃, 600 MHz) δ 7.83 (dd, 1H, *J* = 2.1, 8.3 Hz), 7.74 (dd, 2H, *J* = 2.8, 8.3 Hz), 7.43 (t, 1H, *J* = 8.3 Hz), 7.23 (dd, 1H, *J* = 2.8, 8.3 Hz). ¹³C NMR (CDCl₃, 100 MHz) 160.2, 149.3, 130.0, 121.3, 115.8, 108.2, 55.9. GC-MS m/z 153.1.

4-Nitrobenaylalchol (2f).¹ Eluent: Ethyl acetate/petroleum ether (1:10). Yellow solid. Yield 78% (119.3 mg), mp 90°C. 1H NMR (CDCl₃, 600 MHz) δ 8.16 (d, 2H, *J* =8.7 Hz), 7.5 (d, 2H, *J* = 8.7 Hz), 4.81 (s, 2H), 2.09 (s,1H). ¹³C NMR (CDCl₃, 100 MHz) 148.3, 147.3, 127.1, 123.8, 64.0. GC-MS m/z 153.1.

4-Fluoronitrobenzene (2g).¹ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow oil. Yield

85% (119.1 mg). 1H NMR (CDCl₃, 600MHz) δ 8.28 (m, 2H), 7.22 (m, 2H,). ¹³C NMR (CDCl₃, 100 MHz) 167.6, 165.0, 144.3, 126.4, 126.3, 116.6, 116.3. 19F NMR (CDCl₃, 400MHz) 101.87. GC-MS m/z 141.1.

2-Nitrochlorobenzene (2h).⁴ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 68% (106.8mg), mp 30°C. 1H NMR (CDCl₃, 600 MHz) δ 7.85 (d, 1H, *J* = 8.24 Hz), 7.52 (m, 2H), 7.40 (t, 1H, *J* = 8.24 Hz). ¹³C NMR (CDCl₃, 100 MHz) 148.0, 133.3, 131.9, 127.7, 127.1, 125.7. GC-MS m/z 157.5.

3-Nitrochlorobenzen (2i).¹ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 88% (138.7mg), mp 42°C. 1H NMR (CDCl₃, 600MHz) δ 8.24 (s, 1H), 8.14 (d, 1H, *J* = 8.3 Hz), 7.69 (d, 1H, *J* = 8.3 Hz), 8.14 (t, 1H, *J* = 8.3 Hz). ¹³C NMR (CDCl₃, 100 MHz) 148.7, 135.5, 134.8, 130.5, 123.9, 121.8. GC-MS m/z 157.5.

1-Bromo-2-nitrobenzene (2j).¹ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 72% (145.5 mg), mp 38°C. 1H NMR (CDCl₃, 600 MHz) δ 7.84 (d, 1H, *J* = 7.6 Hz), 7.75 (d, 1H, *J* = 8.3 Hz), 7.46 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) 149.8, 135.1, 133.3, 128.3, 125.7, 114.5. GC-MS m/z 202.0.

1-Bromo-4-nitrobenzene (2k).⁵ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 89% (179.2mg), mp 120°C. 1H NMR (CDCl₃, 600MHz) δ 8.09 (d, 2H, *J* = 8.25 Hz), 7.68 (d, 2H, *J* = 8.25 Hz). ¹³C NMR (CDCl₃, 100 MHz) GC-MS m/z=202.0

2-Nitroaniline (21).¹ Eluent: Ethyl acetate/petroleum ether (1:15). Yellow solid. Yield 60% (82.8 mg), mp 110°C. 1H NMR (CDCl₃, 600 MHz) δ 7.57 (d, 1H, *J* = 8.2 Hz), 7.49 (s, 1H), 7.27 (t, 1H, *J* = 8.2 Hz), 6.95 (d, 2H, *J* = 8.2 Hz). ¹³C NMR (CDCl₃, 100 MHz) 149.3, 147.5, 130.0, 120.7, 113.2, 109.1. GC-MS m/z 138.1.

4-Nitroaniline (2m).⁶ Eluent: Ethyl acetate/petroleum ether (1:15). Yellow solid. Yield 60% (82.8mg), mp 145 °C. 1H NMR (CDCl₃, 600 MHz) δ 8.06 (d, 2H, *J* = 8.94 Hz), 6.61 (d, 2H, *J* = 8.94 Hz), 4.28 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz) 152.6, 152.5, 126.4, 113.4. GC-MS m/z 138.1.

3-Notrophenol (2n).⁷ Eluent: Ethyl acetate/petroleum ether (1:15). Yellow solid. Yield 70% (97.4mg), mp 40°C. 1H NMR (CDCl₃, 600 MHz) δ 10.57 (s, 1H), 8.09 (d, 1H, *J* = 8.24 Hz), 7.57 (t, 1H, *J* = 7.79 Hz), 7.14 (t, 1H, *J* = 8.7 Hz), 6.98 (t, 1H, *J* = 7.79 Hz). ¹³C NMR (CDCl₃, 100 MHz) 155.2, 137.6, 133.7, 125.2, 120.3, 120.0. GC-MS m/z 139.1.

4-Nitrophenol (20).⁸ Eluent: Ethyl acetate/petroleum ether (1:15). Yellow solid. Yield 90% (125.2mg), mp 111°C. 1H NMR (CDCl₃, 600MHz) δ 8.16 (d, 2H, *J* = 9.16 Hz), 6.92 (d, 2H, *J* = 9.16 Hz). ¹³C NMR (CDCl₃, 100 MHz) 161.6, 141.6, 126.4, 115.8. GC-MS m/z 139.1.

4-Nitrobenzaldelyde (2p).¹ Eluent: Ethyl acetate/petroleum ether (1:80). Yellow solid. Yield 74% (111.7mg), mp 101°C. 1H NMR (CDCl₃, 600 MHz) δ 10.17 (s, 1H), 8.40 (d, 2H, *J* = 8.3 Hz), 8.08 (d, 2H, *J* = 8.3 Hz). ¹³C NMR (CDCl₃, 100 MHz) 190.4, 151.1, 140.1, 130.5, 124.4.

GC-MS m/z 151.1.

4-Nitrobenzonic acid (2q).¹ Eluent: Ethyl acetate/petroleum ether (1:2.5). Yellow solid. Yield 82% (137.0mg), mp 236°C. 1H NMR (CDCl₃, 600 MHz) δ 13.72 (s, 1H), 8.33 (d, 2H, *J* = 8.7 Hz), 8.18 (d, 2H, *J* = 8.7 Hz). ¹³C NMR (CDCl₃, 100 MHz) 166.3, 150.5, 136.9, 131.2, 124.2. GC-MS m/z 167.1.

3-Nitrobenzonic acid (2r).¹ Eluent: Ethyl acetate/petroleum ether (1:2.5). Yellow solid. Yield 75% (125.30mg), mp 138°C. 1H NMR (CDCl₃, 600MHz) δ 13.76 (s, 1H), 8.62 (d, 2H, *J* = 1.4 Hz), 8.47 (dd, 1H, *J* = 1.4, 8.3 Hz), 8.35 (d, 1H, *J* = 7.6Hz), 7.82 (dd, 1H, *J* = 8.3, 7.6 Hz) ¹³C NMR (CDCl₃, 100 MHz) 166.0, 148.4, 135.8, 132.9, 131.0, 127.8, 124.2. GC-MS m/z 167.1.

Methyl-4-Nitrobenzoate (2s).² Eluent: Ethyl acetate/petroleum ether (1:5). Yellow solid. Yield 86% (155.7mg), 95°C. 1H NMR (CDCl₃, 600MHz) δ 8.30 (d, 2H, *J* = 8.7 Hz), 8.22 (d, 2H, *J* = 8.7 Hz), 3.99 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) 165.2, 150.5, 135.5, 130.8, 123.6, 52.9. GC-MS m/z 181.2.

Methyl-3-Nitrobenzoate (2t).⁹ Eluent: Ethyl acetate/petroleum ether (1:5). Yellow solid. Yield 78% (141.2mg), mp 79°C. 1H NMR (CDCl₃, 600 MHz) δ 8.87 (s, 1H), 8.40 (m, 2H), 7.66 (t, 1H, *J* = 7.79 Hz), 3.99 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) 165.0, 148.3, 135.4, 131.9, 129.7, 127.4, 124.7, 52.9. GC-MS m/z 181.2.

1-Nitronophthalene (2u).⁵ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 82% (141.9mg), mp 55°C. 1H NMR (CDCl₃, 600 MHz) δ 8.55 (d, 1H, *J* = 8.24 Hz), 8.21 (d, 1H, *J* = 7.79 Hz), 8.10 (d, 1H, *J* = 8.24 Hz), 7.94 (d, 1H, *J* = 8.24 Hz), 7.70 (m, 1H), 7.61 (m, 1H), 7.52 (d, 1H, *J* = 7.79 Hz). ¹³C NMR (CDCl₃, 100 MHz) 146.6, 134.8, 134.4, 129.5, 128.7, 127.4, 125.2, 124.2, 124.1, 123.2. GC-MS m/z 173.2.

Dibenzo[*b,d*]**furan (2v).**⁷ Eluent: Ethyl acetate/petroleum ether (1:100). Yellow solid. Yield 78% (166.1mg), mp 96°C 1H NMR (CDCl₃, 600 MHz) δ 8.27 (d, 1H, *J* = 8.25 Hz), 8.23(d, 1H, *J* = 7.56 Hz), 7.98 (d, 1H, *J* = 7.56 Hz), 7.94 (d, 1H, *J* = 8.24 Hz), 7.73 (m, 1H, *J* = 8.25 Hz), 7.56 (t, 1H, *J* = 7.22 Hz), 7.45 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) 156.8, 148.5, 133.9, 128.8, 128.3, 126.9, 124.0, 122.9, 122.6, 122.2, 120.8, 112.4. GC-MS m/z 213.0.

EPR measurement

The EPR measurement was performed on a X-band EPR (10.0 GHz) instrument JES FA200 (JEOL). The mixture of 4-methylphenyl boronic acid (0.1 mmol) and Fe(NO₃)₃ (0.05 mmol) in 0.5mL of toluene was added into an EPR tube. Conditions of EPR measurements were as follows: microwave power (1 mW), central field (250 mT), magnetic width (500 mT), modulation width (0.2 mT), time constant (0.3 s), measure time (4 min) in Figure 1 in text. Conditions of EPR measurements were as follows: microwave power (10mW), central field (323 mT), magnetic width (4 mT), modulation (0.03 mT), time constant (0.3 s), measurement time (8 min) in Figure 2 in text. The simulation of the hyperfine structure on the free radical was taken by the ISO-SIMU software from JEOL company. Based on the measurement spectrum and references^[10], the simulation parameters are as follows: $A_N = 1.001 \text{ mT}$, $A_B^{11} = 0.190 \text{ mT}$, $A_B^{10} = 0.064 \text{ mT}$, $A^{\text{orth}}_H = 0.185 \text{ mT}$, $A^{\text{meta}}_H = 0.81 \text{ mT}$, $A^{\text{methyl}}_H = 0.205 \text{mT}$.

References

- 1 H. Yang, Y. Li, M. Jiang, J. Wang and H. Hu, Chem. Eur. J., 2011, 17, 5652-5660.
- 2 S. Manna, S. Maity, S. Rana and D. Maiti, Org. Lett., 2012, 14, 1736-1739.
- 3 C. Han and S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 7532-7533.
- 4 E. Franz and G. Juergen, *SynthGCs*, 1975, 1, 40-41.
- 5 X. Wu, J. Schranck and M. Bellsr, Chem. Commun., 2011, 47, 12462-12463.
- 6 Ji, J. H. Atherton and M. I. Page, J. Org. Chem., 2012, 77, 7471-7478.
- 7 Y. Zhang, T. F. Jamison and N. Mainolfi, Org. Lett., 2011, 13, 280-283.
- 8 M. Imoto, Y. Matsui and H. Ikeda, J. Org. Chem., 2011, 76, 6356-6361.
- 9 G.A. Molander and L. N. Cavalcanti, J. Org. Chem., 2012, 77, 4402-4413.
- 10 (a) J. R. Morton, K. F. Preston and S. J. Strach, J. Phys. Chem. 1979, 83, 533-536. (b) S.
 Hahne and U. Schindewolf. J. Phys. Chem. 1975, 79, 2922-2928. (c) J. C. A. Boeyens, J. Phys.

Chem. 1967, 71, 2969-2974.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

