Electronic Supplementary Information

A binuclear Mn(II) complex as an efficient catalyst for transamidation of carboxamides with amines

Divya Pratap Singh, Bharat Kumar Allam, Krishna Nand Singh and Vinod Prasad Singh*

Department of Chemistry (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi 221005, India

*E mail: singvp@yahoo.co.in

Table of Contents

1.	General information ———————————	• S ₃
2.	Reagents	S ₃
3.	Synthesis and characterization of ligand H_2 bpoh ———	- S ₃₋₄
4.	Crystal structure of ligand H ₂ bpoh ——————	- S ₄₋₅
5.	Synthesis and characterization of Mn(II) complex ———	– S ₅
6.	Packing of Mn(II) complex ————————————————————————————————————	— S ₆
7.	Inter- and intra-molecular H-bonding in Mn(II) complex -	— S ₆
8.	Crystallographic data for ligand and Mn(II) complex —	 S ₇₋₉
9.	Catalytic activity test —————————————	S ₁₀
10.	References ———————————————	S ₁₀
11.	¹ H and ¹³ C spectra of ligand ––––––––––––––––––––––––––––––––––––	- S 11

1. General information

Infrared spectra were recorded in KBr on a Varian 3100 FT-IR spectrophotometer in 4000-400 cm⁻¹ region. An electronic spectrum of the complex was recorded on a Shimadzu spectrophotometer model Pharmaspec UV-1700 in nujol. The C, H and N contents were determined on an Exeter Analytical Inc. CHN Analyzer (Model CE-440). Magnetic susceptibility measurement was performed at room temperature on a Faraday balance using Hg[Co(SCN)₄] as the calibrant and corrected for diamagnetism.¹ All the transamidation experiments were carried out under open atmosphere by using standard Schlenk technique. Column chromatography was carried out employing Merck silica gel (100-120 mesh). Pre-coated Merck GF₂₅₄ plates (thickness 0.25 mm) were used for thin-layer analytical chromatography. Visualization of spots on TLC plate was accomplished with UV light and by staining in iodine chamber. ¹H and ¹³C NMR were recorded on JEOL AL300 FT-NMR spectrometer. ¹H frequency is at 300.40 MHz and ¹³C frequency is at 75.45 MHz. ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak as follows: DMSO- d_6 = 2.50 (¹H NMR); DMSO- d_6 = 39.50 (¹³C NMR). Product yields refer to isolated yields after column chromatography.

Single crystal X-ray diffraction data of ligand H₂bpoh and the complex [Mn(Hbpoh)(OAc)(H₂O)]₂.6H₂O were obtained at 295(2) K, on a Oxford Diffraction Gemini diffractometer equipped with CrysAlis Pro., using a graphite mono-chromated Mo-K α (λ = 0.71073 Å) radiation source. The structures were solved by direct methods (SHELXL-97) and refined against all data by full matrix least-square on F^2 using anisotropic displacement parameters for all non-hydrogen atoms. All hydrogen atoms were included in the refinement at geometrically ideal position and refined with a riding model.^{2,3} The MERCURY package and ORTEP-3 for Windows program were used for generating structures.^{4,5}

2. Reagents

All the chemicals are of analytical grade and were purchased from various commercial sources and used without further purification. 2-bezoylpyridine and oxalic acid dihydrazide were obtained from Sigma-Aldrich, USA; $MnCl_2 \cdot 4H_2O$, $Mn(OAc)_2 \cdot 4H_2O$, MnO_2 , $Mn(NO_3)_2 \cdot 4H_2O$ and solvents were obtained from Merck Chemicals, India.

3. Synthesis and characterization of ligand H₂bpoh

(a) Procedure for synthesis of H₂bpoh

The ligand, (N'1E,N'2E)-N'1,N'2-bis(phenyl (pyridin-2-yl)methylene)oxalohydrazide (H₂bpoh) was prepared by reacting 50 mL aqueous solution of oxalic acid dihydrazide (5 mmol, 0.59 g) with 25 mL methanolic solution of 2-bezoylpyridine (10 mmol, 1.83 g) in 1:2 molar ratio in a round bottom flask. The reaction mixture was

refluxed continuously for 20 h. A white solid product was obtained on cooling the above solution at room temperature. The product was filtered on a Buckner funnel through suction and purified by washing several times with water followed by methanol to remove the unreacted components. The pure compound was dried in a desiccator over anhydrous CaCl₂ at room temperature. Single crystal of the ligand H₂bpoh was obtained from a mixture of dichloromethane and DMSO solution by slow evaporation at room temperature.

(b) Characterization data of H₂bpoh Yield (80%), m. p. 292 °C. *Anal.* Calc. for $C_{26}H_{20}N_6O_2$ (448.48): C, 69.63; H, 4.49; N, 18.74. Found: C, 69.55; H, 4.47; N, 18.71%. IR (v cm⁻¹, KBr): v(NH) 3387(b); v(C=O) 1690(s); v(C=N) 1582(m); v(N-N) 994(w). ¹H NMR (DMSO-*d*₆; δ ppm): 14.08[#] (br s, 2H, NH, Z), 10.28 (br s, 2H, NH, E); 8.89–7.39 (m, 18H, Ar-H). ¹³C NMR (DMSO-*d*₆; δ ppm): 160.79, 157.48, 150.70, 148.40, 148.25, 137.33, 136.30, 135.90, 128.90, 128.28, 127.83, 127.66, 125.16, 124.37.

[#]The appearance of NH proton signal at higher ppm (14.08) is due to involvement in intra-molecular H-bonding with pyridine-N in Z form.⁶

4. Crystal structure of ligand H₂bpoh

The ORTEP diagram of ligand with the atomic numbering scheme is shown (Fig. 1). The molecule displays a E configuration about the >C=N bond.⁷ The >C=Oand >C=N displays a bond distance of 1.208(5) Å and 1.294(5) Å, respectively which is consistent with a double bond.⁸ The N(2)-N(3) bond distance is 1.372(5) Å, which is slightly shorter than the single bond, showing some double bond character. Due to N(3)-H…N(1) intra-molecular the presence of hydrogen bond. Py-C(6)=N(2)-N(3)-C(13)=O(1) skeleton in the ligand is almost planar. The intramolecular hydrogen bond N(3)-H(3A)...N(1), is formed between N(3)-H(3A) of atom and the nitrogen of pyridine ring. The torsion angles amido-N N(2) [-5.7(8)°] and N(3)-N(2)-C(6)-C(7) [179.9(4)°] indicate that O(1)-N(2) and N(1)-N(2) are syn-periplanar to each other but N(1)-C(7) and N(3)-C(7) are antiperiplanar to each other.

Fig. S1 ORTEP diagram of H₂bpoh showing atomic numbering scheme with intramolecular hydrogen bonding (ellipsoid of 30% probability).

5. Synthesis and characterization of Mn(II) complex

(a) Procedure for synthesis of Mn(II) complex The $[Mn(Hbpoh)(OAc)(H_2O)]_2 \cdot 6H_2O$ was synthesized by reacting 50 mL methanolic solution of Mn(II) acetate (5 mmol, 1.23 g) with 50 mL hot methanolic solution of the ligand H₂bpoh (5 mmol, 2.24 g) in 1:1 (M:L) molar ratio in a round bottom flask. The reaction mixture was refluxed for 2 h and then cooled at room temperature. The pure complex was crystallized by slow evaporation of the solvent at room temperature.

(b) Characterization of Mn(II) complex Yield (65%), Pink, m. p. 185 °C. μ_{eff} = 5.95 B.M. *Anal.* Calc. for C₅₆H₆₀Mn₂N₁₂O₁₆ (1267.04): Mn, 8.67; C, 53.09; H, 4.77; N, 13.27. Found: Mn, 8.70; C, 53.12; H, 4.74; N, 13.24%. IR (v cm⁻¹, KBr): v(OH) 3433 (b) ; v(NH) 3301 (w); v(C=O) 1686 (s); v(C=N) 1580 (s); v(C=N) 1567 (m); v(C=N-CO⁻) 1547 (m); v(C-O)⁻ 1250(w) ; v(N-N) 1024 (w).

6. Packing diagram of Mn(II) complex

Fig. S3 Packing diagram of Mn(II) complex

7. Inter- and intra-molecular H-bonding in Mn(II) complex

Fig. S4 Inter- and intra-molecular hydrogen bonding leading to five member water clusters

8. Selected crystallographic data for ligand and Mn(II) complex

	H ₂ bpoh	[Mn(Hbpoh)(OAc)(H ₂ O)] ₂ .6H ₂ O	
Empirical Formula	$C_{26}H_{20}N_6O_2$	$C_{56}H_{60}Mn_2N_{12}O_{16}$	
Formula weight	448.48	1267.04	
Temp, K	293	293	
λ (Å)	0.71073	0.71073	
Crystal system	Triclinic	Triclinic	
Space group	P-1	P -1	
a (Å)	10.000(10)	11.6403(9)	
b (Å)	15.6555(16)	12.6172(10)	
c (Å)	16.5447(16)	12.7323(9)	
α (°)	115.226(10)	60.362(2)	
β (°)	101.302(8)	73.137(2)	
γ (°)	98.774(9)	63.765(2)	
V (Å ³)	2214.9(5)	1451.75(19)	
Z	4	1	
D _{calc} (g/cm ³)	1.345	1.431	
μ (mm ⁻¹)	0.089	0.514	
F(000)	936	642	
	0.24x 0.22x		
Crystal size (mm)	0.20	0.34x 0.32x 0.30	
θ range for data collection (°)	2.93 - 29.15	3.24 - 27.44	
No. of reflections collected	19908	14320	
No. of independent reflections	11941	6561 (0.0568)	

 Table 1 Crystallographic data of the ligand and complex

(R _{int})	(0.0821)	
Number of	11941 / 6 /	0504/7/000
data/restraints/parameters	614	6561/7/393
Goodness-of-fit on F ²	0.910	1.085
	0.0766,	0.0770.0.0040
R_1 , w $R_2^{a,b}[(I>2\sigma(I))]$	0.0809	0.0776, 0.2243
R ₁ , wR ₂ ^{a,b} (all data)	0.3186,	0.4002 0.2500
R_1 , WR_2^{-1} (all data)	0.1391	0.1092, 0.2590
Largest difference in peak and	0.178 and -	4 000
hole (e.Å ⁻³)	0.177	1.620 and -0.736
		0 -0-1/0

^a R₁ = Σ||F₀| - |Fc||Σ|F₀|; ^b R₂ = [Σw(|F²₀| - |F²_c|)²/Σw|F²₀|²]^{1/2}

	H ₂ bpoh	[Mn(Hbpoh)(OAc)(H ₂ O)] ₂ .6H ₂ O
Bond Length		
O(1)–C(13)	1.208(5)	1.260(4)
N(3)–C(13)	1.352(5)	1.310(5)
N(3)–N(2)	1.372(5)	1.393(5)
N(2)–C(6)	1.294(5)	1.286(5)
C(5)–C(6)	1.497(6)	1.480(6)
C(5)–N(1)	1.347(6)	1.351(4)
N(1)-C(1)	1.325(6)	1.340(6)
C(6)–C(7)	1.474(7)	1.496(4)
Mn(1)–O(1)		2.209(4)
Mn(1)–O(1) ⁱ		2.188(3)

Table 2 Selected bond lengths and bond angles

Mn(1)–O(3)		2.178(5)
Mn(1)–O(5)		2.225(6)
Mn(1)–N(1)		2.307(4)
Mn(1)–N(2)		2.323(2)
Bond Angle		
O(1)-C(13)-N(3)	127.1(5)	126.5(4)
N(3)–N(2)–C(6)	120.1(4)	119.3(3)
C(5)–N(1)–C(1)	118.2(5)	118.2(4)
C(13)–N(3)–N(2)	118.3(4)	107.5(3)
O(1)-Mn(1)-O(3)		95.1(1)
O(1)-Mn(1)-O(5)		86.7(1)
O(1)-Mn(1)-N(2)		133.2(1)
O(1)-Mn(1)-N(1)		156.8(1)
O(1)-Mn(1)-O(1)		66.6(1)
O(3)-Mn(1)-O(5)		162.7(2)
O(3)-Mn(1)-N(2)		99.5(1)
O(3)-Mn(1)-N(1)		84.8(2)
O(3)-Mn(1)-O(1)		102.2(1)
O(5)-Mn(1)-N(2)		91.7(1)
O(5)-Mn(1)-N(1)		86.9(2)
O(5)-Mn(1)-O(1)		94.3(1)
N(2)-Mn(1)-N(1)		69.2(1)
N(2)-Mn(1)-O(1)		66.9(1)
N(1)-Mn(1)-O(1)		136.1(1)
Mn(1)–O(1)–Mn(1)		113.4(1)

9. Catalytic activity test

(a) Procedure for transamidation [Mn(Hbpoh)(OAc)(H₂O)]₂·6H₂O (5 mol%) was added to a Schlenk flask, equipped with a rubber septum and teflon-coated stir bar, containing carboxamide (10 mmol) and amine (10 mmol). The resulting mixture was vigorously stirred at 120 °C for 24 h. The progress of the reaction was monitored through TLC. After completion of the reaction, the resulting mixture was cooled to room temperature; ethyl acetate (20 mL) was added and filtered through a porous plug. The filtrate was concentrated using rotary vacuum evaporator. The crude product thus obtained was purified by column chromatography using a mixture of ethyl acetate/n-hexane as an eluent. All the products have been full characterized on the basis of their physical and spectral properties.

10. References

- 1. R. L. Dutta and A. Syamal, *Elements of Magnetochemistry*, Affiliated East-West Press Pvt. Ltd., New Delhi, **1993**.
- 2. G. M. Sheldrick, Acta Crystallogr. Sect. A, 1990, 46, 467–473.
- 3. G. M. Sheldrick, *SHELXL-97, Program for Crystal Structure Refinement,* University of Gottingen, Germany, **1997**.
- 4. I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr. Sect. B*, 2002, **58**, 389–397.
- 5. L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565–566.
- 6. A. A. R. Despaigne, J. G. Da Silva, A. C. M. do Carmo, O. E. Piro, E. E. Castellano and H. Beraldo, *Inorg. Chim. Acta.*, 2009, **362**, 2117-2122.
- 7. D. P. Singh, D. S. Raghuvanshi, K. N. Singh and V. P. Singh, *J. Mol. Catal. A: Chem.*, 2013, **379**, 21–29.
- 8. G. J. Xiao and C. Wei, *Acta Cryst.*, 2009, **E65**, o585.

