Supporting Information for

Photochemical functionalisation of optical nanotips with a rhodamine chemosensor for remote through-fiber detection of Hg²⁺

Kun Chen,^{*a*} Catherine Adam,^{*b*} Neso Sojic,^{*,*b*} and Michael Schmittel^{*,*a*}

^a Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany

^bGroupe Nanosystèmes Analytiques, Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux 1, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac, France.

Table of content

pH effect on photoluminescence of rhodamine 4	Page 2
Absorption spectra of rhodamine 4 in presence of different cations	Page 2
Time response of rhodamine 4 toward Hg^{2+}	Page 2
PL titration of rhodamine 4 with Hg^{2+} in MeCN/ 0.1 M HEPES buffer	Page 3
Job plot of rhodamine 4 with Hg ²⁺	Page 3
NMR spectra of compound 4 and $[4 + Hg^{2+}]$	Page 3
Absorption spectra of glass slide functionalised with compound 10 after irradiation	Page 4
In situ spectrum of the functionalised optical fiber bundles in presence of Hg^{2+}	Page 4
Titration curve of luminescence intensity fiber vs. lg [Hg ²⁺]	Page 5

Fig. S1 PL intensity (at $\lambda_{em} = 556$ nm) of rhodamine 4 (10 μ M) in MeCN/buffer (95/5, v/v) from pH 1 to 13 ($\lambda_{ex} = 520$ nm).

Fig. S2 UV-Vis absorption spectra of rhodamine 4 (10 μ M) in presence of different cations in buffer solution (MeCN / 0.1 M HEPES buffer (pH = 7.40 ± 0.10) solution = 95:5, v/v).

Fig. S3 Time response of rhodamine 4 (10 μ M) toward Hg²⁺ (0.2 mM) in buffer solution (MeCN / 0.1 M HEPES buffer (pH = 7.40 \pm 0.10) solution = 95:5, v/v) monitored by PL at λ_{em} = 556 nm (λ_{ex} = 520 nm).

Fig. S4 PL titration (at $\lambda_{em} = 556$ nm, $\lambda_{ex} = 520$ nm) of rhodamine 4 (10 µM) in presence of different amounts of Hg²⁺ in aqueous buffer solution (MeCN / 0.1 M HEPES buffer (pH = 7.40 ± 0.10) = 50:50, v/v).

Fig. S5 Job plot of compound 4 vs. Hg²⁺ in MeCN with $[Hg^{2+}] + [4] = 10 \ \mu\text{M}$ followed by PL (at $\lambda_{em} = 556 \text{ nm}$, $\lambda_{ex} = 520 \text{ nm}$).

Fig. S6 ¹H NMR (400 MHz, CD₃CN) spectra of (a) 4, (b) 4 + Hg²⁺. Dichloromethane is indicated by $\mathbf{\nabla}$.

Fig. S7 UV-Vis absorption spectra of the surface-immobilised compound 10 on the glass slide after irradiation with the LC8 system for different periods of time in methanol.

Fig. S8 The *in-situ* PL spectrum ($\lambda_{ex} = 514 \text{ nm}$) of the rhodamine-functionalised optical fiber bundles in presence of Hg²⁺ (5 mM) in MeCN / 0.1 M HEPES buffer (pH = 7.40 ± 0.10) = 95:5, v/v.

Fig. S9 Photoluminescence titration ($\lambda_{em} = 558 \text{ nm}$, $\lambda_{ex} = 514 \text{ nm}$) of rhodamine-functionalised fiber bundles *vs.* lg [Hg²⁺] in MeCN / 0.1 M HEPES buffer solution (pH = 7.40 ± 0.10) = 95:5, v/v.