Au-ZnO bullet-like heterodimer nanoparticles: synthesis and use for enhanced nonenzymatic electrochemical determination of glucose

Deivasigamani Ranjith Kumar, Devaraj Manoj, Jayadevan Santhanalakshmi*

*Department of Physical Chemistry, University of Madras, Maraimalai Campus, Guindy, Chennai600 025, India

*E-mail: jslakshmi@yahoo.co.in

Fabrication of Au-ZnO/MWCNTs/GC modified electrode

5 mg of MWCNTs and 1 mg of Au-ZnO were dispersed in 0.5 % nafion in ethanol solution with the aid of ultrasonication for 10 minutes in order to get homogeneous suspension. 5 μ L of as prepared Au-ZnO/MWCNTs suspension was drop casted onto a pre-polished GC electrode surface and allowed to dry under ambient conditions.

Table S1 Cyclic voltammetry of different modified electrode containing 2 mM $[Fe(CN)6]^{3/4-}$ at scan rate 50 mVs⁻¹

Electrode	$i_{pa}(\mu A)$	Electrochemical active area (cm ²)	$\Delta E_{\rm p}({\rm mV})$	$k^0 (\mathrm{cm s}^{-1})$
GC	23.00	0.0763	140	1.821X10 ⁻³
MWCNTs/GC	27.86	0.0925	89	5.203X10 ⁻³
Au/MWCNTs/GC	32.77	0.1063	86	5.918X10 ⁻³
Au-ZnO/MWCNTs/GC	57.11	0.1897	66	22.01X10 ⁻³

Table S2 Comparison of the analytical performance of the Au-ZnO/MWCNTs/GC modified

electrode to nonenzymatic glucose determination and other Au and ZnO nanoparticles modified

Electrode	Applied potential (V)	Detection limit(µM)	Linear range (µM)	Reference
AuNP/BSA/	0	500.0	20-160	1
RGO/GCE				
Nf/Pt HNPCs/porous AuNPs-CS	0.35	1.0	0.3-770	2
Cu-NPs/ZnO	0.8	0.2	1.0-1530	3
POT-Au-SAM (MPB) electrode	-	200.0	500-3000	4
Au NW array	-0.4	30.0	-	5
electrode				
GNPs/MWCNTs/IL GCE	0.0	2.0	5.0-120.0	6
Au-ZnO/MWCNTs/GC	0.42	0.19	19-291	This work

Figure S1 EDX spectra of Au-ZnO HNPs HNPs

Figure S2 XPS spectra of (A) Au nanoseed (B) Survey spectra of bullet-like Au-ZnO HNPS (C) C1s

Figure S3 CVof 2 mM glucose in 0.1 M NaOH at Au-ZnO/MWCNTs/GC modified electrode with different scan rates: (a) 20, (b) 30, (c) 50, (d) 70, (e) 90, (f) 110, (g) 130, (h) 150, (i) 170 mVs⁻¹. Inset: the double log plot of scan rate vs. peak current and scan rate (mVs⁻¹) vs peak current.

Figure S4 Stability test of the Au-ZnO/MWCNTs/GC modified electrode at every five days once tested current response.

References

- [1] Y. Liu, Y. Dong, C. X. Guo, Z. Cui, L. Zheng, C. M. Li, *Electroanalysis*, 2012, 24, 2348.
- [2] J. Li, R.Yuan, Y. Chai, X. Che, W. Li, X. Zhong, Microchim. Acta, 2011, 172, 163.
- [3] S. A. Kumar, H. W. Cheng, S. M. Chen, S. F. Wang, *Mater SciEng C Mater Biol Appl*, 2010, 30, 86.
- [4] H. Ciftci, U. Tamer, React. Funct. Polym, 2012, 72, 127.
- [5] S. Cherevko, C. H. Chung, Sensor Actuat B chem, 2009, 142, 216.
- [6] H. Zhu, X. Lu, M. Li, Y. Shao, Z. Zhu, Talanta, 2009, 79, 1446.