Supporting Information

CuO nanoparticles catalysed synthesis of 2*H*-indazoles under a ligand free condition

Nilufa Khatun, Anupal Gogoi, Pallabita Basu, Prasenjit Das and Bhisma K Patel

Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India Fax no. +91-3612690762; E-mail: <u>patel@iitg.ernet.in</u>

List of Contents

1.	Crystallographic description	S1-S2
2.	Spectral data	S3-S12
3.	Spectra (¹ H NMR, ¹³ C NMR and HRMS) of compounds	S13-S34

Experimental:

General information:

All the reagents were commercial grade and purified according to the established procedures. Organic extracts were dried over anhydrous sodium sulphate. Solvents were removed in a rotary evaporator under reduced pressure. Silica gel (60–120 mesh size) was used for the column chromatography. Reactions were monitored by TLC on silica gel 60 F_{254} (0.25 mm). NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard for ¹H NMR (400 MHz) CDCl₃ solvent as the internal standard for ¹³C NMR (100 MHz). Elemental analysis was performed with a Perkin Elmer 2400 elemental analyzer. IR spectra were recorded in KBr or neat on a Nicolet Impact 410 spectrophotometer. Commercially available CuO nano (<50 nm) were purchased from Sigma-Aldrich.

Crystallographic Analysis: Crystal data were collected with Bruker Smart Apex-II CCD diffractometer using graphite by using graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å) at 298 K. Cell parameters were retrieved using SMART ¹USA, 1995 software and refined with SAINT¹ for all observed reflections. Data reduction was performed with the SAINT software and corrected for Lorentzian and polarization effects. Absorption corrections were applied with the SADABS program². The structures were solved by direct methods implemented in the SHELX-97³ program and refined by full-matrix least-squares methods on F^2 . All non-hydrogen atom positions were located in difference Fourier maps and refined anisotropically. The hydrogen atoms were placed in their geometrically generated positions. The crystals were isolated in rectangular shape from ethyl acetate and hexane mixture at room temperature.

References

- 1. SMART, SAINT and XPREP, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin.
- G. M. Sheldrick, SADABS: Empirical Absorption and Correction Software, University of Gottingen, Institut fur Anorganische Chemieder Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany, 1999–2003.
- 3. G. M. Sheldrick, SHELXS-97, University of Gottingen, Germany, 1997.

Figure 1. ORTEP views of 2-Phenyl-2H-indazole (1a)

Crystallographic description of 2-Phenyl-2H-indazole (**1a**): C₁₃H₁₀N₂, crystal dimension 0.41 x 0.35 x 0.22 mm, $M_r = 194.23$, Monoclinic, Space group 'C c', a = 5.9752(9) Å, b = 25.124(4) Å, c = 13.8320(17) Å, $\alpha = 90.00$, $\beta = 97.080(9)$, $\gamma = 90.00$, V = 2060.6(5) Å³, Z = 8, $\rho_{calcd} = 1.252$ mg/m³, $\mu = 0.076$ mm⁻¹, F(000) = 816.0, reflection collected / unique = 5146 / 2204, refinement method = full-matrix least-squares on F^2 , final *R* indices [$I > 2\sigma(I)$]: $R_1 = 0.0681$, $wR_2 = 0.2066$, *R* indices (all data): $R_1(all) = 0.1370$, $wR_2(all) = 0.2543$, goodness of fit = 1.009. CCDC-961653 (for 2-phenyl-2H-indazole (**1a**)) contains the supplementary crystallographic data for this paper.

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

SPECTRAL DATA

2-Phenyl-2H-indazole (**1a**): White solid; M.p. 81.5-83.5 °C (lit.⁴ 80-82 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.11 (t, 1H, *J* = 7.6 Hz), 7.32 (t, 1H, *J* = 7.6 Hz), 7.39 (t, 1H, *J* = 7.2 Hz), 7.49-7.53 (m, 2H), 7.69 (d, 1H, *J* = 8.8 Hz), 7.79 (d, 1H, *J* = 8.8 Hz), 7.89 (d, 2H, *J* = 7.6 Hz), 8.39 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 118.1, 120.6, 121.2, 122.6, 122.9, 127.0, 128.1, 129.7, 140.7, 149.9; IR (KBr): 3126, 2923, 1624, 1593, 1517, 1493, 1378, 1311, 1198, 1072, 1044, 944, 753 cm⁻¹; elemental analysis calcd (%) for C₁₃H₁₀N₂ (194.2315): C 80.39, H 5.19, N 14.42; found C 80.47, H 5.12, N 14.35.

2-*p***-Tolyl-2H-indazole** (**1b**): Yellow solid; M.p. 100-103 °C (lit.⁵101-103 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.41 (s, 3H), 7.09 (t, 1H, *J* = 7.6 Hz), 7.29-7.33 (m, 3H), 7.69 (d, 1H, *J* = 8.4 Hz), 7.76-7.80 (m, 3H), 8.35 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.2, 118.1, 120.5, 121.1, 122.5, 122.9, 126.8, 130.3, 138.1, 138.5, 149.9; IR (KBr): 3038, 2920, 2857, 1624, 1522, 1451, 1378, 1347, 1196, 1108, 1047, 822, 792, 757, 739 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₂N₂ (208.2580): C 80.74, H 5.81, N 13.45; found C 80.81, H 5.89, N 13.39.

2-(3,4-Dimethylphenyl)-2H-indazole (**1c**): Brown solid; M.p. 117-119 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.33 (s, 3H), 2.37 (s, 3H), 7.11 (t, 1H, *J* = 8 Hz), 7.26 (s, 1H), 7.29-7.33 (m, 1H), 7.58 (d, 1H, *J* = 8 Hz), 7.70 (d, 2H, *J* = 8.4 Hz), 7.79 (d, 1H, *J* = 8.8 Hz), 8.38 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 19.5, 20.0, 117.9, 118.2, 120.4, 122.2, 122.3, 122.8, 126.7, 130.6, 136.6, 138.2, 138.5, 149.7; IR (KBr): 2925, 2851, 1611, 1517, 1500, 1465, 1448, 1379, 1129, 1056, 882, 816, 776, 757 cm⁻¹; elemental analysis calcd (%) for C₁₅H₁₄N₂ (222.2845): C 81.05, H 6.35, N 12.60; found C 81.13, H 6.31, N 12.53.

2-(2,4-Dimethylphenyl)-2H-indazole (**1d**): Liquid; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.18 (s, 3H), 2.39 (s, 3H), 7.10-7.16 (m, 3H), 7.28-7.34 (m, 2H), 7.72 (d, 1H, *J* = 8.4 Hz), 7.78 (d, 1H, *J* = 8.8 Hz), 8.05 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 17.8, 21.2, 117.9, 120.4, 122.0, 122.1, 124.5, 126.3, 126.4, 127.2, 131.9, 133.5, 138.0, 139.1, 149.3; IR (KBr): 3059, 2922, 1627, 1520, 1505, 1386, 1349, 1198, 1146, 1129, 1042, 819, 784, 756 cm⁻¹; elemental analysis calcd (%) for C₁₅H₁₄N₂ (222.2845): C 81.05, H 6.35, N 12.60; found C 81.15, H 6.39, N 12.53.

2-(2,6-Dimethylphenyl)-2H-indazole (**1e**): Semi-solid; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.99 (s, 6H), 7.13-7.19 (m, 3H), 7.30 (d, 1H, J = 8 Hz), 7.35 (t, 1H, J = 7.6 Hz), 7.76 (d, 1H, J = 8.8 Hz), 7.81 (d, 1H, J = 9.2 Hz), 7.98 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 17.3, 118.2, 120.5, 121.9, 122.2, 124.6, 126.3, 128.3, 129.5, 135.7, 139.9, 149.3; IR (KBr): 2922, 2853, 1624, 1515, 1482, 1376, 1267, 1184, 1095, 1045, 954, 791, 763 cm⁻¹; elemental analysis calcd (%) for C₁₅H₁₄N₂ (222.2845): C 81.05, H 6.35, N 12.60; found C 81.11, H 6.38, N 12.54.

2-(4-Butylphenyl)-2H-indazole (**1f**): Yellow solid; M.p. 64-65 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 0.89-0.98 (m, 3H), 1.33-1.39 (m, 2H), 1.58-1.66 (m, 2H), 2.66 (t, 2H, J = 8.0 Hz), 7.09 (t, 1H, J = 8.0 Hz), 7.30 (d, 3H, J = 8.4 Hz), 7.68 (dd, 1H, $J_I = 1.2$ Hz, $J_2 = 8.4$ Hz), 7.77 (d, 3H, J = 8.8 Hz), 8.35 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 13.9, 22.3, 33.5, 35.1, 117.9, 120.3, 120.4, 120.8, 122.3, 122.8, 126.7, 129.4, 138.4, 142.9, 149.7; IR (KBr): 2955, 2925, 2854, 1626, 1520, 1466, 1430, 1383, 1349, 1208, 1121, 1047, 815, 780, 754 cm⁻¹; elemental analysis calcd (%) for C₁₇H₁₈N₂ (250.3375): C 81.56, H 7.25, N 11.19; found C 81.63, H 7.29, N 11.13.

2-(4-Methoxyphenyl)-2H-indazole (**1g**): Brown solid; M.p. 130-132 °C (lit.⁵ 130-132 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 3.84 (s, 3H), 6.99 (d, 2H, J = 8.8 Hz), 7.07-7.11 (m, 1H), 7.28-7.32 (m, 1H), 7.67 (d, 1H, J = 8.4 Hz), 7.77 (d, 3H, J = 8.8 Hz), 8.28 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 55.5, 114.6, 117.7, 120.3, 120.4, 122.19, 122.24, 122.7, 126.6, 134.0, 149.6, 159.2; IR (KBr): 3137, 2958, 2836, 1610, 1520, 1440, 1382, 1303, 1245, 1207, 1177, 1029, 837, 810, 754 cm⁻¹; Elemental analysis calcd (%) for C₁₄H₁₂N₂O (224.2574): C 74.98, H 5.39, N 12.49; found C 75.05, H 5.33, N 12.43.

2-(4-Butoxyphenyl)-2H-indazole (**1h**): Yellow solid; M.p. 103-105 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 0.99 (t, 3H, *J* = 7.6 Hz), 1.52 (m, 2H), 1.80 (m, 2H), 4.02 (t, 2H, *J* = 6.8 Hz), 7.02 (d, 2H, *J* = 9.2 Hz), 7.11 (t, 1H, *J* = 7.6 Hz), 7.31 (t, 1H, *J* = 8.8 Hz), 7.70 (d, 1H, *J* = 8.4

Hz), 7.78 (d, 3H, J = 9.2 Hz), 8.32 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 13.9, 19.3, 31.4, 68.2, 115.3, 117.8, 120.4, 122.3, 122.4, 122.8, 126.6, 133.9, 149.7, 158.9; IR (KBr): 2954, 2937, 2870, 1609, 1521, 1382, 1306, 1303, 1246, 1180, 1110, 1047, 1009, 837, 780, 753 cm⁻¹; Elemental analysis calcd (%) for C₁₇H₁₈N₂O (266.3369): C 76.66, H 6.81, N 10.52; found C 76.74, H 6.78, N 10.45.

2-(Naphthalen-1-yl)-2H-indazole (**1i**): Liquid; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.17 (t, 1H, *J* = 8.4 Hz), 7.37 (t, 1H, *J* = 8 Hz), 7.48 (t, 1H, *J* = 8.4 Hz), 7.55-7.59 (m, 2H), 7.65 (d, 1H, *J* = 7.2 Hz), 7.72 (d, 1H, *J* = 8.4 Hz), 7.78 (d, 1H, *J* = 8.6 Hz), 7.84 (d, 1H, *J* = 8.8 Hz), 7.94 (d, 1H, *J* = 8 Hz), 7.99 (d, 1H, *J* = 8.4 Hz), 8.29 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 118.2, 120.5, 122.2, 122.5, 123.2, 124.0, 125.1, 125.6, 126.8, 127.0, 127.8, 128.3, 129.2, 129.9, 134.3, 137.8, 149.8; IR (KBr): 3057, 2924, 2853, 1627, 1597, 1519, 1474, 1416, 1385, 1277, 1214, 1128, 1111, 1020, 939, 757, 733 cm⁻¹; Elemental analysis calcd (%) for C₁₇H₁₂N₂ (244.2901): C 83.58, H 4.95, N 11.47; found C 83.67, H 4.91, N 11.41.

2-(Pyridin-2-yl)-2H-indazole (**1j**): Yellow solid; M.p. 106-108 °C (lit.⁷103-104 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.09 (t, 1H, *J* = 7.6 Hz), 7.28-7.34 (m, 2H), 7.74 (t, 2H, *J* = 8.8 Hz), 7.89 (t, 1H, *J* = 8.4 Hz), 8.29 (d, 1H, *J* = 8 Hz), 8.51 (d, 1H, *J* = 4.8 Hz), 9.11 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 114.2, 118.2, 120.7, 121.3, 122.5, 122.8, 127.7, 138.9, 148.4, 150.4, 151.9; IR (KBr): 3148, 3059, 2924, 1590, 1573, 1518, 1476, 1434, 1376, 1250, 1198, 1139, 1053, 783, 761 cm⁻¹; Elemental analysis calcd (%) for C₁₂H₉N₃ (195.2196): C 73.83, H 4.65, N 21.52; found C 73.90, H 4.70, N 21.43.

2-(4-Chlorophenyl)-2H-indazole (**1k**): Yellowish-white solid; M.p. 137-139 °C (lit.⁷ 138-140 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.10 (t, 1H, *J* = 7.2 Hz), 7.31 (t, 1H, *J* = 7.6 Hz), 7.47 (d, 2H, *J* = 8.8 Hz), 7.67 (d, 1H, *J* = 8.4 Hz), 7.75 (d, 1H, *J* = 8.8 Hz), 7.83 (d, 2H, *J* = 8.8 Hz), 8.35 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 118.0, 120.4, 120.5, 122.0, 122.8, 123.0, 127.3, 129.8, 133.6, 139.1, 150.0; IR (KBr): 3131, 2962, 1628, 1518, 1495, 1423, 1382, 1204, 1093, 1046, 952, 825, 811, 778, 754, 727 cm⁻¹; Elemental analysis calcd (%) for C₁₃H₉N₂Cl (228.6763): C 68.28, H 3.97, N 12.25; found C 68.37, H 3.92, N 12.17.

2-(4-Fluorophenyl)-2H-indazole (**1l**): Yellowish-white solid; M.p. 103-104 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.12 (t, 1H, J = 7.6 Hz), 7.21 (d, 1H, J = 8.4 Hz), 7.25 (d, 1H, J = 6.4 Hz), 7.33 (t, 1H, J = 7.6 Hz), 7.71 (d, 1H, J = 8.4 Hz), 7.78 (d, 1H, J = 8.8 Hz), 7.85-7.89 (m, 2H), 8.35 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 116.5 (d, $J_{C-F} = 22.1$ Hz), 118.0, 120.6 (d, $J_{C-F} = 9.9$ Hz), 122.7, 122.8, (d, $J_{C-F} = 8.4$ Hz), 122.9, 127.1, 136.9, 149.9, 160.9, 163.4; IR (KBr): 3135, 2924, 1627, 1520, 1508, 1382, 1234, 1203, 1097, 1042, 951, 861, 839, 752, 779 cm⁻¹; Elemental analysis calcd (%) for C₁₃H₉N₂F (212.2220): C 73.57, H 4.27, N 13.20; found C 73.66, H 4.33, N 13.12.

2-(3-Nitrophenyl)-2H-indazole (**1m**): Brown solid; M.p. 128-130 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.13 (t, 1H, *J* = 7.6 Hz), 7.34 (t, 1H, *J* = 8.8 Hz), 7.70 (d, 1H, *J* = 8 Hz), 7.75 (t, 2H, *J* = 8.8 Hz), 8.24 (d, 1H, *J* = 8 Hz), 8.32 (d, 1H, *J* = 8 Hz), 8.51 (s, 1H), 8.77 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 115.7, 118.3, 120.6, 120.7, 122.4, 123.4, 123.5, 126.4, 127.9, 130.8, 149.2, 150.5; IR (KBr): 2924, 2853, 1740, 1628, 1616, 1530, 1488, 1382, 1346, 1261,

1099, 1045, 817, 802, 760, 734 cm⁻¹; Elemental analysis calcd (%) for C₁₃H₉N₃O₂ (239.2291): C 65.27, H 3.79, N 17.56; found C 65.33, H 3.82, N 17.49.

2-(4-Methylbenzyl)-2H-indazole (**1n**): Yellow solid; M.p. 80-82 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.33 (s, 3H), 5.54 (s, 2H), 7.06 (t, 1H, *J* = 7.2 Hz), 7.17 (q, 4H, *J* = 8 Hz), 7.25-7.28 (m, 1H), 7.60 (d, 1H, *J* = 8.4 Hz), 7.72 (d, 1H, *J* = 8.8 Hz), 7.84 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.3, 57.5, 117.7, 120.3, 121.8, 122.3, 122.8, 126.1, 128.3, 128.7, 129.8, 132.9, 138.4, 149.1; IR (KBr): 3119, 2921, 1623, 1512, 1465, 1440, 1421, 1385, 1350, 1136, 805, 791, 754, 729 cm⁻¹; Elemental analysis calcd (%) for C₁₅H₁₄N₂ (222.2845): C 81.05, H 6.35, N 12.60; found C 81.13, H 6.32, N 12.51.

2-Butyl-2H-indazole (**1o**): Liquid; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 0.95 (t, 3H, J = 7.2 Hz), 1.35 (m, 2H), 1.99 (m, 2H), 4.41 (t, 2H, J = 7.2 Hz), 7.07 (t, 1H, J = 7.6 Hz), 7.25-7.29 (m, 1H), 7.64 (d, 1H, J = 7.6 Hz), 7.72 (d, 1H, J = 8.8 Hz), 7.89 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 13.7, 19.9, 32.7, 53.5, 117.4, 120.1, 121.6, 121.8, 122.7, 125.8, 148.8; IR (KBr): 3060, 2959, 2932, 2873, 1628, 1515, 1466, 1380, 1311, 1157, 1141, 1011, 907, 757 cm⁻¹; Elemental analysis calcd (%) for C₁₁H₁₄N₂ (174.2417): C 75.82, H 8.10, N 16.08; found C 75.88, H 8.08, N 15.98.

5-Fluoro-2-phenyl-2H-indazole (**2a**): Yellow solid; M.p. 135.5-137.5 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.12 (dt, 1H, $J_I = 2$ Hz, $J_2 = 8.0$ Hz), 7.27 (d, 1H, J = 9.6 Hz), 7.41 (t, 1H, J = 7.6 Hz), 7.53 (t, 2H, J = 8.0 Hz), 7.75-7.81 (m, 1H), 7.88 (d, 2H, J = 8.4 Hz), 8.37 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 102.9 (d, $J_{C-F} = 25.2$ Hz), 118.6 (d, $J_{C-F} = 29$ Hz), 120.2 (d, $J_{C-F} = 9.2$ Hz), 120.6 (d, $J_{C-F} = 9.2$ Hz), 121.0, 122.2 (d, $J_{C-F} = 12.2$ Hz), 128.2, 129.8, 140.5, 147.4, 158.9 (d, $J_{C-F} = 239.5$ Hz); IR (KBr): 3129, 3035, 2924, 2853, 1683, 1595, 1523, 1504, 1460, 1408, 1329, 1228, 1215, 1147, 1123, 1073, 1053, 854 cm⁻¹; Elemental analysis calcd (%) for C₁₃H₉N₂F (212.2220): C 73.57, H 4.27, N 13.20; found C 73.74, H 4.22, N 13.09.

5-Fluoro-2-p-tolyl-2H-indazole (**2b**): Yellow solid; M.p. 139-141 °C (lit.⁷ 140-142 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.43 (s, 3H), 7.12 (dt, 1H, $J_1 = 2.4$ Hz, $J_2 = 9.2$ Hz), 7.26-7.29 (m, 1H), 7.32 (d, 2H, J = 8.0 Hz), 7.75 (d, 3H, J = 8.8 Hz), 8.33 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.1, 102.8 (d, $J_{C-F} = 24.4$ Hz), 118.4 (d, $J_{C-F} = 29$ Hz), 120.1 (d, $J_{C-F} = 9.9$ Hz), 120.5 (d, $J_{C-F} = 7.7$ Hz), 120.9, 122.1 (d, $J_{C-F} = 12.2$ Hz), 130.3, 138.2, 147.2, 158.8 (d, $J_{C-F} = 239.5$ Hz); IR (KBr): 3137, 3036, 2922, 1638, 1526, 1379, 1337, 1323, 1217, 1146, 1121, 1051, 830, 810, 762 cm⁻¹; Elemental analysis calcd (%) for C₁₄H₁₁N₂F (226.2485): C 74.32, H 4.90, N 12.38; found C 74.42, H 4.95, N 12.30.

5-Fluoro-2-(3,4-dimethylphenyl)-2H-indazole (**2c**): Yellow solid; M.p. 105-106 ^oC; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.32 (s, 3H), 2.36 (s, 3H), 7.11 (dt, 1H, *J*₁ = 2.4 Hz, *J*₂ = 9.2 Hz), 7.25-7.28 (m, 2H), 7.54 (dd, 1H, *J*₁ = 2 Hz, *J*₂ = 8 Hz), 7.67 (s, 1H), 7.73-7.77 (m, 1H), 8.32 (s,

1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 19.4, 19.9, 102.8 (d, $J_{C-F} = 24.4$ Hz), 118.1, 118.4, 120.0 (d, $J_{C-F} = 9.9$ Hz), 120.5 (d, $J_{C-F} = 8.4$ Hz), 121.9, 122.1, 130.6, 136.8, 138.3, 138.4, 147.1, 158.7 (d, $J_{C-F} = 238.7$ Hz); IR (KBr): 3145, 2923, 1635, 1613, 1523, 1454, 1412, 1380, 1336, 1228, 1213, 1171, 1144, 1118, 1056, 850, 823, 805 cm⁻¹; Elemental analysis calcd (%) for C₁₅H₁₃N₂F (240.2750): C 74.98, H 5.45, N 11.66; found C 75.06, H 5.49, N 11.57.

5-Fluoro-2-(4-methoxyphenyl)-2H-indazole (**2g**): Brown solid; M.p. 143-144 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 3.87 (s, 3H), 7.03 (d, 2H, J = 8.8 Hz), 7.11 (dt, 1H, $J_I = 2.4$ Hz, $J_2 = 9.2$ Hz), 7.25-7.28 (m, 1H), 7.70 (d, 3H, J = 8.8 Hz), 8.27 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 55.7, 102.8 (d, $J_{C-F} = 24.4$ Hz), 114.8, 118.2 (d, $J_{C-F} = 29$ Hz), 119.9 (d, $J_{C-F} = 9.9$ Hz), 120.5 (d, $J_{C-F} = 8.4$ Hz), 122.4, 134.1, 147.1, 158.7 (d, $J_{C-F} = 238.7$ Hz), 159.5; IR (KBr): 2960, 2932, 1609, 1522, 1511, 1450, 1435, 1337, 1298, 1249, 1219, 1145, 1027, 835, 814 cm⁻¹; Elemental analysis calcd (%) for C₁₄H₁₁N₂OF (242.2479): C 69.41, H 4.58, N 11.56; found C 69.49, H 4.54, N 11.50.

2-(4-Butoxyphenyl)-5-fluoro-2H-indazole (**2h**): Yellow solid; M.p. 110-112 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 0.92 (t, 3H, J = 7.2 Hz), 1.44 (m, 2H), 1.73 (m, 2H), 3.94 (t, 2H, J = 6.8 Hz), 6.94 (d, 2H, J = 8.8 Hz), 7.04 (dt, 1H, $J_1 = 2.4$ Hz, $J_2 = 9.2$ Hz), 7.18-7.20 (m, 1H), 7.68 (d, 3H, J = 8.8 Hz), 8.19 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 13.9, 19.3, 31.3, 68.1, 102.7 (d, $J_{C-F} = 24.4$ Hz), 115.1, 118.0 (d, $J_{C-F} = 28.2$ Hz), 119.8 (d, $J_{C-F} = 9.9$ Hz), 120.3 (d, $J_{C-F} = 7.7$ Hz), 122.1, 133.7, 146.9, 158.6 (d, $J_{C-F} = 238.7$ Hz), 158.9; IR (KBr): 3139, 2941, 2876, 1636, 1591, 1525, 1296, 1250, 1220, 1180, 1148, 1038, 1007, 836, 809, 768 cm⁻¹; Elemental analysis calcd (%) for C₁₇H₁₇N₂OF (284.3274): C 71.81, H 6.03, N 9.85; found C 71.89, H 6.07, N 9.78.

5-Fluoro-2-(naphthalen-1-yl)-2H-indazole (**2i**): Yellowish-white solid; M.p. 120-122 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.19 (dt, 1H, $J_1 = 2.4$ Hz, $J_2 = 9.2$ Hz), 7.34 (dd, 1H, $J_1 = 2.0$ Hz, $J_2 = 7.2$ Hz), 7.48-7.59 (m, 3H), 7.63-7.65 (m, 1H), 7.71 (d, 1H, J = 8.4 Hz), 7.80-7.84 (m, 1H), 7.95 (d, 1H, J = 8.0 Hz), 7.99 (d, 1H, J = 8.4 Hz), 8.24 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 102.8 (d, $J_{C-F} = 24.4$ Hz), 118.4 (d, $J_{C-F} = 29$ Hz), 120.2 (d, $J_{C-F} = 9.9$ Hz), 121.4 (d, $J_{C-F} = 11.4$ Hz), 122.9, 123.9, 125.0, 125.7 (d, $J_{C-F} = 8.4$ Hz), 126.9, 127.8, 128.2, 128.9, 129.9, 134.2, 137.5, 147.1, 158.7 (d, $J_{C-F} = 239.5$ Hz); IR (KBr): 3058, 2924, 1634, 1595, 1522, 1420, 1387, 1227, 1175, 1147, 1120, 854, 798 cm⁻¹; Elemental analysis calcd (%) for C₁₇H₁₁N₂F (262.2806): C 77.85, H 4.23, N 10.68; found C 77.93, H 4.29, N 10.60.

5-Fluoro-2-(pyridin-2-yl)-2H-indazole (**2j**): White solid; M.p. 133.5-135.5 (lit.⁷ 129-130 °C) °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.11 (dt, 1H, $J_I = 2.4$ Hz, $J_2 = 9.2$ Hz), 7.26-7.30 (m, 2H), 7.69-7.73 (m, 1H), 7.88 (dt, 1H, $J_I = 2.0$ Hz, $J_2 = 8.4$ Hz), 8.23 (d, 1H, J = 8.4 Hz), 8.49 (d, 1H, J = 4.8 Hz), 9.04 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 103.4 (d, $J_{C-F} = 23.6$ Hz), 114.1, 119.6 (d, $J_{C-F} = 29$ Hz), 120.4 (d, $J_{C-F} = 9.1$ Hz), 120.8 (d, $J_{C-F} = 9.1$ Hz), 121.8 (d, $J_{C-F} = 12.2$ Hz), 123.0, 139.0, 147.9, 148.5, 151.9, 158.9 (d, $J_{C-F} = 241$ Hz); IR (KBr): 3147, 2924, 1596, 1522, 1475, 1439, 1377, 1323, 1212, 1144, 1114, 1055, 863, 837, 808 cm⁻¹; Elemental analysis calcd (%) for C₁₂H₈N₃F (213.2101): C 67.60, H 3.78, N 19.71; found C 67.68, H 3.82, N 19.62.

References

- 4. E. C. Creencia, M. Kosaka, T. Muramatsu, M. Kobayashi, T. Iizuka and Takaaki Horaguchi, *J. Heterocycl. Chem.*, 2009, **46**, 1309.
- 5. Y. Fang, C. Wu, R. C. Larock and Feng Shi, J. Org. Chem., 2011, 76, 8840.
- 6. J. Hu, Y. Cheng, Y. Yang and Y. Rao, *Chem. Commun.*, 2011, 47, 10133.
- 7. M. R. Kumar, A. Park, N. Park and S. Lee, Org. Lett., 13, 2542.

Spectra

2-Phenyl-2H-indazole (1a): ¹H NMR (400 MHz, CDCl₃)

2-Phenyl-2H-indazole (1a): ¹³C NMR (100 MHz, CDCl₃)

2-p-Tolyl-2H-indazole (1b): ¹H NMR (400 MHz, CDCl₃)

2-p-Tolyl-2H-indazole (1b): ¹³C NMR (100 MHz, CDCl₃)

2-(3,4-Dimethylphenyl)-2H-indazole (1c): ¹H NMR (400 MHz, CDCl₃)

2-(3,4-Dimethylphenyl)-2H-indazole (1c): ¹³C NMR (100 MHz, CDCl₃)

2-(2,4-Dimethylphenyl)-2H-indazole (1d): ¹H NMR (400 MHz, CDCl₃)

2-(2,4-Dimethylphenyl)-2H-indazole (1d): ¹³C NMR (100 MHz, CDCl₃)

2-(2,6-Dimethylphenyl)-2H-indazole (1e): ¹H NMR (400 MHz, CDCl₃)

2-(2,6-Dimethylphenyl)-2H-indazole (1e): ¹³C NMR (100 MHz, CDCl₃)

2-(4-Butylphenyl)-2H-indazole (1f): ¹³C NMR (100 MHz, CDCl₃)

2-(4-Methoxyphenyl)-2H-indazole (1g): ¹H NMR (400 MHz, CDCl₃)

2-(4-Methoxyphenyl)-2H-indazole (1g): ¹³C NMR (100 MHz, CDCl₃)

2-(4-Butoxyphenyl)-2H-indazole (1h): ¹H NMR (400 MHz, CDCl₃)

2-(4-Butoxyphenyl)-2H-indazole (1h): ¹³C NMR (100 MHz, CDCl₃)

2-(Naphthalen-1-yl)-2H-indazole (1i): ¹H NMR (400 MHz, CDCl₃)

2-(Naphthalen-1-yl)-2H-indazole (1i): ¹³C NMR (100 MHz, CDCl₃)

2-(Pyridin-2-yl)-2H-indazole (1j): ¹H NMR (400 MHz, CDCl₃)

2-(Pyridin-2-yl)-2H-indazole (1j): ¹³C NMR (100 MHz, CDCl₃)

2-(4-Chlorophenyl)-2H-indazole (1k): ¹H NMR (400 MHz, CDCl₃)

2-(4-Chlorophenyl)-2H-indazole (1k): ¹³C NMR (100 MHz, CDCl₃)

2-(4-Fluorophenyl)-2H-indazole (11): ¹H NMR (400 MHz, CDCl₃)

2-(4-Fluorophenyl)-2H-indazole (11): ¹³C NMR (100 MHz, CDCl₃)

2-(3-Nitrophenyl)-2H-indazole (1m): ¹H NMR (400 MHz, CDCl₃)

2-(3-Nitrophenyl)-2H-indazole (1m): ¹³C NMR (100 MHz, CDCl₃)

2-(4-Methylbenzyl)-2H-indazole (1n): ¹³C NMR (100 MHz, CDCl₃)

2-Butyl-2H-indazole (10): ¹H NMR (400 MHz, CDCl₃)

2-Butyl-2H-indazole (10): ¹³C NMR (100 MHz, CDCl₃)

5-Fluoro-2-phenyl-2H-indazole (2a): ¹H NMR (400 MHz, CDCl₃)

5-Fluoro-2-phenyl-2H-indazole (2a): ¹³C NMR (100 MHz, CDCl₃)

5-Fluoro-2-p-tolyl-2H-indazole (2b): ¹H NMR (400 MHz, CDCl₃)

5-Fluoro-2-p-tolyl-2H-indazole (2b): ¹³C NMR (100 MHz, CDCl₃)

5-Fluoro-2-(3,4-dimethylphenyl)-2H-indazole (2c): ¹³C NMR (100 MHz, CDCl₃)

5-Fluoro-2-(4-methoxyphenyl)-2H-indazole (2g): ¹H NMR (400 MHz, CDCl₃)

5-Fluoro-2-(4-methoxyphenyl)-2H-indazole (2g): ¹³C NMR (100 MHz, CDCl₃)

2-(4-Butoxyphenyl)-5-fluoro-2H-indazole (2h): ¹³C NMR (100 MHz, CDCl₃)

5-Fluoro-2-(naphthalen-1-yl)-2H-indazole (2i): ¹H NMR (400 MHz, CDCl₃)

5-Fluoro-2-(naphthalen-1-yl)-2H-indazole (2i): ¹³C NMR (100 MHz, CDCl₃)

5-Fluoro-2-(pyridin-2-yl)-2H-indazole (2j): ¹³C NMR (100 MHz, CDCl₃)

