Electronic Supplementary Information

The impact of surface structure and band gap on the optoelectronic properties of Cu_2O nanoclusters of varying size and symmetry

Banita Sinha, Tamal Goswami, Satadal Paul and Anirban Misra*

Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling 734013, West Bengal, India,

^{*}Email anirbanmisra@yahoo.com

Clusters	Symmetry	Bond distances (d)/Å	Reported (d)/Å	Angles		Reporte d
(Cu ₂ O) ₁	$C_{2\nu}$	$\begin{array}{c} {\rm Cu_{2CUS}}{\rm -O_{1CUS}}^2\\ {\rm Cu_{3CUS}}{\rm -O_{1CUS}}^2\end{array}$	1.765 L 1.788 G	^(a) 1.75	$\angle Cu_{2 CUS} - O_{1 CUS}^2 - Cu_3$ CUS	90.9° ^L 93.1° ^G	^(a) 87°
		Cu_{2CUS} – Cu_{3CUS}	2.516 ^L 2.61 1 ^G	^(a) 2.41	$\angle O_{1 CUS}^2$ -Cu _{2 CUS} -Cu ₃ cus	44.5° ^L 43° ^G	
(Cu ₂ O) ₂	$C_{2\nu}$	$\begin{array}{c} Cu_{2CSA}-O_{1CUS}^{3}\\ Cu_{3CSA}-O_{1CUS}^{3}\\ Cu_{2CSA}-O_{4CUS}^{3}\\ Cu_{2CSA}-O_{4CUS}^{3}\\ Cu_{2CSA}-O_{4CUS}^{3}\end{array}$	1.999 L 2.026 G	^(b) 1.91	$ \begin{array}{c} \swarrow Cu_{2CSA} - O_{1CUS}{}^{3} - Cu_{3} \\ \end{array} \\ \begin{array}{c} \overset{CSA}{\swarrow} Cu_{2CSA} - O_{4CUS}{}^{3} - Cu_{3} \end{array} $	72.4° ^L 74.2° ^G	
		$Cu_{3 CSA} = O_{4 CUS}$			$ \overset{\text{CSA}}{\underset{\text{CUS}}{\overset{3}{\rightarrow}}} \overset{3}{\underset{\text{CUS}}{\overset{3}{\rightarrow}}} Cu_{2 \text{ CSA}} \overset{-}{\underset{\text{O}_{4}}{\rightarrow}} O_{4} $	107.5 ^L 105.3 ^G	^(b) 109.6°
		$\begin{array}{c} Cu_{6CUS} - O_{1CUS}{}^3\\ Cu_{5CUS} - O_{4CUS}{}^3\end{array}$	1.830 1.830	^(b) 1.76	$ \overset{\text{CUS}}{\angle} \overset{3}{O_{1 \text{ CUS}}}^{3} - \text{Cu}_{2 \text{ CSA}} - \text{Cu} $ $ \overset{3\text{CSA}}{\angle} \overset{3}{O_{1 \text{ CUS}}}^{3} - \text{Cu}_{3 \text{ CSA}} - \text{Cu} $	53.8° ^L 52.9° ^G	
			U		$ \overset{\text{2CSA}}{\angle} O_{4 \text{ CUS}}{}^{3}\text{-} Cu_{2 \text{ CSA}} - Cu \\ \overset{\text{3CSA}}{\angle} O_{4 \text{ CUS}}{}^{3}\text{-} Cu_{3 \text{ CSA}} - Cu $		
		Cu _{2 CSA} -Cu _{3 CSA}	2.361 ^L 2.44 5 ^G		$ \begin{array}{c} {}_{2\text{CSA}} \\ \swarrow & \text{Cu}_{2\text{ CSA}} - \text{O}_{1\text{ CUS}}{}^{3} - \text{Cu}_{6} \\ \\ {}_{2\text{ Cu}_{3\text{ CSA}}} - \text{O}_{1\text{ CUS}}{}^{3} - \text{Cu}_{6} \\ \\ \\ {}_{2\text{ Cu}_{2\text{ CSA}}} - \text{O}_{4\text{ CUS}}{}^{3} - \text{Cu}_{5} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	82.6° ^L 87.4° ^G	
(Cu ₂ O) ₃	C_{2v}	$\begin{array}{c} Cu_{2CSA} = O_{1CSA} \\ Cu_{2CSA} = O_{4CSA} \\ Cu_{3CSA} = O_{1CSA} \\ Cu_{3CSA} = O_{1CSA} \\ Cu_{3CSA} = O_{1CSA} \end{array}$	2.026 L 2.057 G		$ \begin{array}{c} \swarrow Cu_{3 CSA} - O_{4 CUS}{}^{3} - Cu_{5} \\ \end{array} \\ \begin{array}{c} Cus \\ \swarrow Cu_{2 CSA} - O_{1 CSA} - Cu_{3} \\ \end{array} \\ \begin{array}{c} csa \\ \swarrow Cu_{2 CSA} - O_{4 CSA} - Cu_{3} \end{array} $	75.1° ^L 74.4° ^G	
		Cu ₃ CSA O4CSA				104.8 ^L 105.5 ^G	
					$ \overset{\text{CSA}}{\angle} \overset{\text{O}_{1 \text{ CSA}}}{-} \overset{\text{C}u_{2 \text{ CSA}}}{-} \overset{\text{C}u}{-} \overset{\text{Cu}_{2 \text{ CSA}}}{-} \overset{\text{Cu}_{3 \text{ CSA}}}{-} \overset{\text{Cu}_{3 \text{ CSA}}}{-} \overset{\text{Cu}_{3 \text{ CSA}}}{-} \overset{\text{Cu}_{3 \text{ CSA}}}{-} \overset{\text{Cu}_{3 $	52.4° ^L 52.8° ^G	

 Table S1: Optimised structural parameters of Cu₂O clusters

		Cu _{8 CUS} -O _{1 CSA}	1.822	^(b) 1.78	\angle Cu _{2 CSA} –O _{1 CSA} –Cu ₈	141.1 ^L
		$Cu_{9 CUS} - O_{4 CSA}$	L 1 828		CUS = -CU	138.7 ^G
			G		$\simeq Cu_{3} CSA = O_{1} CSA = Cu_{8}$ CUS	
					$\angle Cu_{2 CSA} - O_{4 CSA} - Cu_9$	
					$\overset{\text{CUS}}{\angle} \text{Cu}_{3 \text{ CSA}} - \text{O}_{4 \text{ CSA}} - \text{Cu}_{9}$	
		$Cu_{6 CSA} - O_{1 CSA}$	1.956		$\angle Cu_{5 CSA} - O_{4 CSA} - Cu_{9}$	112.8 ^L
		$Cu_{5 CSA} - O_{4 CSA}$	^L 1.96 6 ^G		$\overset{\rm CUS}{\angle} Cu_{6CSA} - O_{1CSA} - Cu_{8}$	119.9 ^G
		$Cu_{cos} = O_{7} cu_{s}^{2}$	1 832		$\frac{CUS}{\sqrt{1-C_{11}}} = \frac{C_{11}}{\sqrt{1-C_{12}}} = \frac{C_{12}}{\sqrt{1-C_{12}}}$	147 7 ^L
		$Cu_5 CSA = O_7 CUS^2$	L		CUS	147.8 ^G
			1.813 _G		$\angle O_{1 \text{ CSA}} - Cu_{6 \text{ CSA}} - O_7$	
		$Cu_{2 CSA}$ – $Cu_{3 CSA}$	2.470 L		$\overset{\text{cus}}{\angle} \text{Cu}_{5 \text{ CSA}} - \text{O}_{7 \text{ CUS}} - \text{Cu}_{6}$	85.8° L
			2.488 G		CSA	87.2° ^G
		Cu _{5 CSA} -Cu _{6 CSA}	2.493 L			
		2	2.5 ^G			
$(Cu_2O)_3$	C_{3v}	$Cu_{1 CSA} - O_{4 CUS}^{3}$	1.832 L	(6) 1.91	$\angle Cu_{1 CSA} - O_{4 CSA} - Cu_{8}$	136.1 ^L ^(b) 109.6° 101.2 ^G
		$Cu_{2 CSA} - O_{4 CUS}^{3}$	1.912		$\angle Cu_{2 CSA} - O_{4 CSA} - Cu_{8}$	101.
		$Cu_{2 CSA} - O_{6 CUS}^{3}$ $Cu_{2 CSA} - O_{5 CUS}^{3}$	0		CUS	
		$Cu_{3 CSA} - O_{6 CUS}^{3}$			CUS	
					$\angle Cu_{3 CSA} - O_{5 CSA} - Cu_{7}$	
					$\angle Cu_{2 CSA} - O_{6 CSA} - Cu_{9}$	
					CUS	
		3		(b)	CUS	T
		$Cu_7 CUS - O_5 CUS^3$ $Cu_8 CUS - O_4 CUS^3$	1.762 L	(6) 1.77	$\angle Cu_{1 CSA} - O_{4 CSA} - Cu_{2}$	87.7° ² 83.2° ^G
		$Cu_{9 CUS} - O_{6 CUS}^{3}$	1.811 G		$\angle Cu_{2 CSA} - O_{6 CSA} - Cu_{3}$	
			-		$\overset{\text{CSA}}{\angle} Cu_{3 CSA} = O_{5 CSA} = Cu_{1}$	
		C C	2 5 2 0		CSA CSA	AcoL
		$Cu_{1 CSA}$ - $Cu_{2 CSA}$ $Cu_{2 CSA}$ - $Cu_{3 CSA}$	2.539 L		$\angle O_{4 CSA} - Cu_{1 CSA} - Cu_{2 CSA}$	40 ⁻ 48.4° ^G
		$Cu_{1 CSA}$ – $Cu_{3 CSA}$	2.539 _G		$\angle O_{4 CSA} - Cu_{2 CSA} - Cu$	
					$\angle O_{5 CSA} - Cu_{1 CSA} -$	
					Cu_{3CSA}	
					Cu_{1CSA} $Cu_{3 CSA}$	
					$\angle O_{6 CSA} - Cu_{2 CSA} - Cu$	
					$\angle O_{6 CSA} - Cu_{3 CSA} -$	
$(Cu_2O)_2$	$C_{\rm s}$	$Cu_{2CSA} = O_{1CUS}^2$	1.776		Cu_{2CSA} $\angle Cu_{2CSA} = O_{1} cu_{2}^{2} = Cu_{2}^{2}$	114.2°
(- 3	$Cu_{3 CSA} = O_{1 CUS}^{2}$	1.000		CSA	100.00
		$Cu_{2 CSA} - O_{4 CUS}$ $Cu_{3 CSA} - O_{7 CUS}^{3}$	1.839		$\angle Cu_{2 CSA} - O_4$	108.3°
		2.001 / 005			$\angle Cu_{3CSA} - O_7$	
					CUS ^T -Cu _{8CUS}	

$Cu_{6} CUS - O_{4} CUS^{3}$	1.857	$\angle Cu_{2 CSA} - O_{4 CUS}^{3} - Cu_{5}$	96.6°
$Cu_{8 CUS} - O_{7 CUS}$		cus	
		$\angle Cu_{3 CSA}$	
$Cut_{\rm Cut} = O_{\rm A} cut_{\rm C}^3$	1 872	$\int C_{7CUS} C_{49CUS} = C_{15}$	86.2°
$Cu_{9}Cu_{5}^{3}$	1.072		00.2
		$\angle Cu_8 CUS = O_7$	
		cus^{3} -Cu _{9CUS}	

(a) is from reference 100.

(b) is from reference 101.

Table S2: Partial DOS (PDOS) data of Cu₂O clusters with increasing size at $C_{2\nu}$ symmetry

Clusters	Sy mm etry	P e a k s	MOs. involved in Transition		MOs.	Contribution of AOs of Cu atom in forming MOs. (%)			Contribution of AOs of O atom in forming MOs.(%)		
			Occupied	Virtual		S	р	d	S	р	
$(Cu_2O)_1$	C_{2v}	1	5A1	5B1	5A1	30	2.1	30		34.08	
					5B1	50	35.6			13.04	
$(Cu_2O)_2$	C_{2v}	1	10B2	17A1	10B2	8		55.5	1.1	28.2	
					17A1	61.6	25.5	6.4		21.01	
$(Cu_2O)_3$	C_{2v}	1	14A1	13B2	14A1	26		25		44.41	
					13B2	57.17	20.27	4.59		13.81	

Table S3: Partial DOS (PDOS) data of Cu_2O clusters with fixed size at different symmetries

clusters	Sy m met ry	p e a k s	MOs. involved in Transition		MOs	Contri Cu ato MOs.	bution of om in for (%)	f AOs of ming	Contribution of AOs of O atom in forming MOs. (%)		
(Cu ₂ O) ₃	C_s	2	Occupied 20AAA	Virtual 22AAA	20AAA	s 17.9	р 2.21	d 35.9	S	р 37	
					22AAA	59.6	28			9.06	
(Cu ₂ O) ₃	C_{2v}	2	14A1	13B2	14A1 13B2	26 57.17	20.27	25 4.59		44.41 13.81	
(Cu ₂ O) ₃	C_{3v}	2	95A	100A	95A 100A	2.58 62.1	13.6	40.7		44.3 14.7	

Clusters	Symmetry	Frequencies (cm ⁻¹)
(Cu ₂ O) ₁	C_{2v}	$v_1 = 99.011, v_2 = 566.589, v_3 = 594.664$
(Cu ₂ O) ₂	<i>C</i> _{2v}	$v_1 = 15.04, v_2 = 49.45, v_3 = 59.767, v_4 = 74.66, v_5 = 123.785, v_6$ = 150.66, $v_7 = 165.108, v_8 = 241.094, v_9 = 317.499, v_{10} = 413.617, v_{11} = 525.733, v_{12} = 547.473$
(Cu ₂ O) ₃	<i>C</i> _{2v}	$ \begin{array}{l} v_1 = i13.422, v_2 = 17.442, v_3 = 25.247, v_4 = 45.538, v_5 = 60.975, v_6 \\ = 97.623, v_7 = 99.626, v_8 = 103.112, v_9 = 116.452, v_{10} = 153.383, \\ v_{11} = 195.809, v_{12} = 197.193, v_{13} = 199.533, v_{14} = 206.058 v_{15} \\ = 221.477, v_{16} = 316.122, v_{17} = 334.313, v_{18} = 506.849, v_{19} = \\ 597.349, v_{20} = 607.34, v_{21} = 612.904. \end{array} $
(Cu ₂ O) ₃	C_{3v}	$ \begin{array}{l} v_1 = i17.692, v_2 = 10.035, v_3 = 11.067, v_4 = 21.395, v_5 = 27.751, v_6 \\ = 30.145, v_7 = 103.919, v_8 = 104.917, v_9 = 133.134, v_{10} = \\ 147.902, v_{11} = 148.521, v_{12} = 200.889, v_{13} = 342.961, v_{14} = \\ 344.991, v_{15} = 408.415, v_{16} = 449.01, v_{17} = 484.134, v_{18} = \\ 486.374, v_{19} = 563.883 v_{20} = 566.764, v_{21} = 584.341. \end{array} $
(Cu ₂ O) ₃	Cs	$ \begin{array}{l} v_1 = i11.756, v_2 = i1.781, v_3 = 7.733, v_4 = 12.833, v_5 = 26.312, v_6 \\ = 34.469, v_7 = 43.984 v_8 = 86.646, v_9 = 107.612, v_{10} = 119.286, \\ v_{11} = 141.953, v_{12} = 144.674, v_{13} = 193.337, v_{14} = 421.759, v_{15} = \\ 425.993, v_{16} = 442.952, v_{17} = 472.448, v_{18} = 517.353, v_{19} = \\ 529.809, v_{20} = 590.120, v_{21} = 714.755. \end{array} $

Table S4. Vibrational frequencies of clusters of different size and symmetry calculated using GGA as exchange and BLYP as correlation functional.

clusters	Symmetry	p e a k s	MOs. involved in Transition		MOs	AOs of Cu atom in forming MOs. (%)			Contribution of AOs of O atom in forming MOs.(%)	
			Occupied	Virtual		S	р	d	S	р
$[Cu_{28}O_{15}]^{6+}$	T _d	1	71T2	38A1	71T2			40		47
					38A1	74.8 6		15.4 5		10.75
[Cu ₄₄ O ₁₅] ⁶⁺	T _d	1	19A1	43T2	19A1	76.0 7		20.9		
					43T2	62.0 8		2.24		15.01

Table S5: Partial DOS (PDOS) data of larger Cu₂O clusters with different size at fixed symmetries

Figure S1: TDDFT valence excitation spectra (intensity vs wavelength) of $(Cu_2O)_1$ (black), $(Cu_2O)_2$ (red) and $(Cu_2O)_3$ (green) clusters having same symmetry $(C_{2\nu})$. Only the most intense discrete transitions are reported and labelled as 1. In the inset the intensity of peak *I* of $(Cu_2O)_2$ is displayed distinctly.

Figure S2: The representation of MOs participating in the electronic transitions to form the most intense peaks labelled as I (a) $[Cu_{28}O_{15}]^{6+}$ and (b) $[Cu_{44}O_{30}]^{6+}$ in T_d symmetry.