Catalyst-free Concise Synthesis of Imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridine derivatives

Xuebing Chen, Li Zhu, Li Fang, Shengjiao Yan* and Jun Lin*

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents

General Information			
Spectrosco	pic Data of Imidazo[1,2-a]pyrrolo[3,4-e]pyridine Derivatives 4–5		
X-ray Struc	cture and Data of 5a		
¹ H NMR an	nd ¹³ C NMR Spectra for Heterocyclic Ketene Aminals Derivatives 1–2		
Figure 1.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1a		
Figure 2.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 1a		
Figure 3.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1b		
Figure 4.	¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectra of compound 1b		
Figure 5.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1c		
Figure 6.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 1c		
Figure 7.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1d		
Figure 8.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 1d		
Figure 9.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1e		
Figure 10.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 1e		
Figure 11.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1f		
Figure 12.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 1f		
Figure 13.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1g		
Figure 14.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 1g		
Figure 15.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 1h		
Figure 16.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 1h	51	
Figure 17.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 2a		
Figure 18.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 2a	53	
Figure 19.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 2c	54	
Figure 20.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 2c		

Figure 21.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 2d	56
Figure 22.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 2d	57
Figure 23.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 2e	58
Figure 24.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 2e	59
Figure 25.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 2f	60
Figure 26.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 2f	61
Figure 27.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 3a	62
Figure 28.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 3a	63
Figure 29.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 3b	64
Figure 30.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 3b	65
Figure 31.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 3c	66
Figure 32.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 3c	67
Figure 33.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 3d	68
Figure 34.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 3d	69
Figure 35.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4a	70
Figure 36.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4a	71
Figure 37.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4b	72
Figure 38.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4b	73
Figure 39.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4c	74
Figure 40.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4c	75
Figure 41.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4d	76
Figure 42.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4d	77
Figure 43.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4e	78
Figure 44.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4e	79
Figure 45.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4f	80
Figure 46.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4f	81
Figure 47.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4g	82
Figure 48.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4g	83
Figure 49.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4h	84
Figure 50.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4h	85
Figure 51.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4i	86
Figure 52.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4 i	87
Figure 53.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4j	88
Figure 54.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4j	89
Figure 55.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4k	90
Figure 56.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4k	91
Figure 57.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4 I	92
Figure 58.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 41	93
Figure 59.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4m	94
Figure 60.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4m	95
Figure 61.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4n	96

Figure 62.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4n	97	
Figure 63.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 40	98	
Figure 64.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 40	99	
Figure 65.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4p	100	
Figure 66.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 4p	101	
Figure 67.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4q	102	
Figure 68.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4q	103	
Figure 69.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4r	104	
Figure 70.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4r	105	
Figure 71.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4s	106	
Figure 72.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4s	107	
Figure 73.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4t	108	
Figure 74.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4t	109	
Figure 75.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4u	110	
Figure 76.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4u	111	
Figure 77.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4v	112	
Figure 78.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4v	113	
Figure 79.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4w	114	
Figure 80.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4w	115	
Figure 81.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4x	116	
Figure 82.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4x	. 117	
Figure 83.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4 y	118	
Figure 84.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4y	119	
Figure 85.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 5a	120	
Figure 86.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 5a	121	
Figure 87.	¹ H NMR (400 MHz, CDCl ₃ - <i>d</i>) spectra of compound 5 b	122	
Figure 88.	13 C NMR (100 MHz, CDCl ₃ - <i>d</i>) spectra of compound 5b	123	
Figure 89.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 5c	124	
Figure 90.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 5 c	125	
Figure 91.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 5d	126	
Figure 92.	13 C NMR (100 MHz, DMSO- d_6) spectra of compound 5d	127	
Figure 93.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 5e	128	
Figure 94.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 5 e	129	
References and Notes			

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz) or Bruker AVIII-400 (¹H: 400 MHz, ¹³C: 100 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, DMSO-*d*₆ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin-layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agilent LC/Msd TOF and Monosiotopic Mass instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

General Procedure for the Preparation of HKAs 1 & 2¹

Dimethylformamide (40 mL), toluene (400 mL), substituted acetophenones (0.2 mol) were charged into a 1 L round-bottom flask. The mixture was stirred at room temperature and sodium hydride (12 g, 80%, 0.4 mol) was added in batches. Then, adding dropwise of carbon disulfide (22.8 g, 0.3 mol) in half hour. Then the whole mixture was cooled in ice bath, and methyl iodide (85.2 g, 0.6 mol) was added dropwise and stirred 2 h in ice bath. The misture was diluted with toluene (400 mL) and treated with ice water (500 mL). The toluene layer was separated and dried with anhydrous sodium sulfate. After removal of toluene, the crude poduct (**ketene dithioacetals**) was recrystallized from EtOAc/petroleum ether.

A mixture of **ketene dithioacetals** (8 mmol) and the corresponding diamines (10 mmol) in toluene (50 mL) was heated at reflux for 3 h, whereupon, a white solid precipitated. The precipitate was filtered, washed with cold enthol, and dried under vacuum.

Spectroscopic Data of Heterocyclic Ketene Aminals 1–2

2-(Nitromethylene)imidazolidine (1a)

White solid; Mp 171–172 °C (lit² 169–170 °C); ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.30 (br, 2H, NH), 6.34 (s, 1H, CH), 3.56–3.60 (m, 4H, NCH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 160.7, 96.2, 43.5.

1-(4-Fluorophenyl)-2-(imidazolidin-2-ylidene)ethanone (1b)

White solid; Mp 230–232 °C (lit^{1b} 224–225 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 9.26 (br, 1H, NH), 7.76–7.80 (m, 2H, ArH), 7.41 (br, 1H, NH), 7.15–7.20 (m, 2H, ArH), 5.25 (s, 1H, CH), 3.57–3.63 (m, 2H, NCH₂), 3.43–3.48 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 181.0, 165.9, 163.4 (d, J = 245.0 Hz), 138.4, 128.9, 128.8, 115.2 (d, J = 22.0 Hz), 115.0 (d, J = 22.0 Hz), 73.3, 43.9, 42.2;

1-(2-Fluorophenyl)-2-(imidazolidin-2-ylidene)ethanone (1c)

White solid; Mp 155–157 °C; IR (KBr): 3166, 2896, 1593, 1483, 1299, 1204, 759, 598 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.17 (br, 1H, NH), 7.65–7.70 (m, 1H, ArH), 7.50 (br, 1H, NH), 7.34–7.39 (m, 1H, ArH), 7.12–7.21 (m, 2H, ArH), 5.13 (s, 1H, CH), 3.57–3.63 (m, 2H, NCH₂), 3.44–3.48 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 178.5, 165.6, 159.8 (d, *J* = 243.0 Hz), 131.0, 130.5, 124.5, 116.2 (d, *J* = 23.0 Hz), 78.3, 43.9, 42.2; HRMS (ESI-TOF): *m*/*z* calcd for C₁₁H₁₁FN₂ONa [(M+Na)⁺], 229.0748; found, 229.0744.

1-(4-Chlorophenyl)-2-(imidazolidin-2-ylidene)ethanone (1d)

White solid; Mp 243–246 °C (lit³ 236–239 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 9.23 (br, 1H, NH), 7.70–7.75 (m, 2H, ArH), 7.42 (br, 1H, NH), 7.38–7.41 (m, 2H, ArH), 5.25 (s, 1H, CH), 3.57–3.62 (m, 2H, NCH₂), 3.49–3.53 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 180.8, 165.9, 140.7, 134.4, 128.4, 128.4, 73.5, 43.9, 42.3.

1-(2-Chlorophenyl)-2-(imidazolidin-2-ylidene)ethanone (1e)

White solid; Mp 145–146 °C; IR (KBr): 3134, 2872, 1605, 1483, 1373, 1185, 743, 563 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.99$ (br, 1H, NH), 7.47 (br, 1H, NH), 7.26–7.38 (m, 4H, ArH), 5.25 (s, 1H, CH), 3.58–3.63 (m, 2H, NCH₂), 3.42–3.47 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 183.4$, 165.0, 143.6, 129.9, 129.6, 129.2, 127.2, 77.7, 43.9, 42.2; HRMS (ESI-TOF): m/z calcd for C₁₁H₁₂ClN₂O [(M+H)⁺], 223.0633; found, 223.0638.

2-(Imidazolidin-2-ylidene)-1-phenylethanone (1f)

White solid; Mp 210–211°C (lit³ 208–210 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 10.33 (br, 1H, NH), 8.74–8.80 (m, 2H, ArH), 8.45 (br, 1H, NH), 8.39–8.41 (m, 3H, ArH), 6.32 (s, 1H, CH), 8.74–8.80 (m, 2H, ArH), 4.62–4.66 (m, 2H, NCH₂), 4.45–4.51 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 183.5, 166.9, 143.0, 130.9, 129.4, 127.6, 74.6, 45.0, 43.0.

2-(Imidazolidin-2-ylidene)-1-(p-tolyl)ethanone (1g)

White solid; Mp 264–266 °C (lit⁴ 256–258 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 9.28 (br, 1H, NH), 7.63 (d, J = 8.0 Hz, 2H, ArH), 7.28 (br, 1H, NH), 6.90 (d, J = 8.0 Hz, 2H, ArH), 5.26 (s, 1H, CH), 3.56–3.61 (m, 2H, NCH₂), 3.42–3.47 (m, 2H, NCH₂), 2.31 (s, 1H, OCH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 182.5, 165.9, 139.3, 139.2, 128.9, 126.6, 73.3, 43.9, 42.2, 21.3.

2-(Imidazolidin-2-ylidene)-1-(4-methoxyphenyl)ethanone (1h)

White solid; Mp 218–219 °C (lit³ 217–219 °C); ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.24 (br, 1H, NH), 7.69 (d, *J* = 8.8 Hz, 2H, ArH), 7.29 (br, 1H, NH), 6.90 (d, *J* = 8.8 Hz, 2H, ArH), 5.23 (s, 1H, CH), 3.77 (s, 1H, OCH₃), 3.56–3.61 (m, 2H, NCH₂), 3.40–3.46 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 182.0, 165.7, 160.8, 134.4, 128.2, 113.6, 72.8, 55.6, 43.9, 42.2.

1-(4-Fluorophenyl)-2-(tetrahydropyrimidin-2(1H)-ylidene)ethanone (2a)

White solid; Mp 236–238 °C (lit^{1b} 228–230 °C); ¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.04 (br, 1H, NH), 7.67–7.71 (m, 2H, ArH), 7.37 (br, 1H, NH), 7.12–7.16 (m, 2H, ArH), 7.39 (d, *J* = 8.5 Hz, 2H, ArH), 5.04 (s, 1H, CH), 3.20–3.30 (m, 4H, NCH₂), 1.79–1.85 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 178.4, 163.0 (d, *J* = 243.0 Hz), 139.0, 128.4, 128.3, 115.1 (d, *J* = 21.0 Hz), 114.9 (d, *J* = 21.0 Hz), 77.0, 37.9, 20.6.

1-(4-Chlorophenyl)-2-(tetrahydropyrimidin-2(1H)-ylidene)ethanone (2b)

White solid; Mp 222–224 °C (lit³ 213–215°C); ¹H NMR (400 MHz, DMSO- d_6): δ = 11.05 (br, 1H, NH), 7.67 (d, J = 8.5 Hz, 2H, ArH), 7.39 (d, J = 8.5 Hz, 2H, ArH), 5.06 (s, 1H, CH), 3.22–3.30 (m, 4H, NCH₂), 1.80–1.86 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 178.1, 160.1, 141.3, 133.8, 128.3, 128.0, 77.2, 37.9, 20.5.

1-Phenyl-2-(tetrahydropyrimidin-2(1H)-ylidene)ethanone (2c)

White solid; Mp 210–212 °C (lit³ 205–207 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 11.14 (br, 1H, NH), 7.63–7.67 (m, 2H, ArH), 7.36 (br, 1H, NH), 7.30–7.36 (m, 3H, ArH), 5.08 (s, 1H, CH), 3.20–3.30 (m, 4H, NCH₂), 1.79–1.85 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 179.8, 160.1, 142.6, 129.2, 128.3, 126.2, 77.1, 37.9, 20.6.

2-(Tetrahydropyrimidin-2(1H)-ylidene)-1-(p-tolyl)ethanone (2d)

White solid; Mp 240–242 °C (lit⁴ 248–250 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 11.11 (br, 1H, NH), 7.55 (d, J = 8.0 Hz, 2H, ArH), 7.34 (br, 1H, NH), 7.13 (d, J = 8.0 Hz, 2H, ArH), 5.06 (s, 1H, CH), 3.20–3.30 (m, 4H, NCH₂), 2.29 (s, 3H, CH₃), 1.79–1.85 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 179.8, 160.1, 139.8, 138.7, 128.8, 126.2, 76.8, 37.9, 21.3, 20.7.

1-(4-Methoxyphenyl)-2-(tetrahydropyrimidin-2(1H)-ylidene)ethanone (2e)

White solid; Mp 207–209 °C (lit³ 206–208 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 11.08 (br, 1H, NH), 7.61 (d, J = 8.7 Hz, 2H, ArH), 7.28 (br, 1H, NH), 6.88 (d, J = 8.7 Hz, 2H, ArH), 5.02 (s, 1H, CH), 3.76 (s, 3H, OCH₃), 3.20–3.30 (m, 4H, NCH₂), 1.79–1.85 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 179.5, 160.4, 160.0, 135.0, 127.7, 113.5, 76.3, 55.5, 37.9, 20.7.

General Procedure for the Preparation of Dioxopyrrolidines 3⁵

A mixture of benzylamine (7.26 g, 66.0 mmol), ethyl acrylate (7.2 mL, 66.0 mmol) in EtOH (15 mL) was stirred at room temperature for 16 h. Diethyl oxalate (9.0 mL, 66 mmol) and freshly-made sodium ethoxide solution in EtOH (generated from 2.0 g of sodium metal, 80.0 mmol, in 15 mL EtOH) was added. The mixture was heated at reflux for 1 h and it solidified. The volatiles were removed in vacuo. The crude product was diluted with H_2O (80 mL) and the pH of the mixture was adjusted to 1 by adding conc.HCl. The mixture was subjected to filtration to afford **6** as a white solid.

A mixture of **6** (2.6 g, 9.8 mmol), benzaldehyde (9.8 mmol) in EtOH (20 mL) / 20 percent aq. HCl (50 mL) was heated at reflux for 4 h. After cooling down to ambient temperature, the aqueous layer was decanted. The obtained chunky solid was collected and further recrystallized from EtOAc to afford **3** as a bright yellow solid.

Spectroscopic Data of Preparation of dioxopyrrolidines 3

(E)-1-benzyl-4-(2,4-dichlorobenzylidene)pyrrolidine-2,3-dione (3a)

Yellow solid; Mp 269–271 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.79 (d, *J* = 8.0 Hz, 1H, ArH), 7.67 (s, 1H, ArH), 7.60 (d, *J* = 8.6 Hz, 1H, ArH), 7.50 (d, *J* = 8.5 Hz, 1H, ArH), 7.34–7.38 (m, 4H, ArH), 7.30–7.34 (m, 1H, ArH), 4.69 (s, 2H, ArCH₂), 4.50 (s, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.2, 160.3, 136.8, 136.6, 135.9, 132.0, 130.4, 130.3, 129.4, 129.2, 128.6, 128.5, 128.1, 47.6, 46.7; HRMS (ESI-TOF): *m/z* calcd for C₁₈H₁₄Cl₂NO₂ [(M+H)⁺], 368.0216; found, 368.0213.

(*E*)-1-benzyl-4-(4-chlorobenzylidene)pyrrolidine-2,3-dione (3b)

Yellow solid; Mp 230–231 °C; IR (KBr): 3788, 3427, 1699, 1638, 1253, 1168, 735, 657 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.62$ (d, J = 8.4 Hz, 2H, ArH), 7.51–7.57 (m, 3H, ArH), 7.36–7.40 (m, 4H, ArH), 7.30–7.35 (m, 1H, ArH), 4.72 (s, 2H, ArCH₂), 4.54 (s, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 187.2$, 160.6, 136.3, 136.0, 134.7, 133.4, 132.8, 129.8, 129.2, 128.4, 128.1, 127.2, 47.6, 47.0; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₅ClNO₂Na [(M+Na)⁺], 334.0605; found, 334.0603.

(*E*)-1-benzyl-4-benzylidenepyrrolidine-2,3-dione (3c)

Yellow solid; Mp 179–181 °C (lit⁵ 182–183 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 7.60–7.64 (m, 2H, ArH), 7.55–7.59 (m, 1H, ArH), 7.47–7.53 (m, 3H, ArH), 7.32–7.40 (m, 5H, ArH), 4.73 (s, 2H, ArCH₂), 4.54 (s, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 187.3, 160.6, 136.2, 136.0, 133.8, 131.8, 131.6, 129.7, 129.2, 128.7, 128.5, 128.1, 127.9, 126.6, 47.5, 47.1.

(E)-1-benzyl-4-(4-methoxybenzylidene)pyrrolidine-2,3-dione (3d)

Yellow solid; Mp 185–187 °C (lit⁶ 188–189 °C); ¹H NMR (400 MHz, DMSO- d_6): δ = 7.54–7.61 (m, 3H, ArH), 7.30–7.39 (m, 5H, ArH), 7.05 (d, J = 8.7 Hz, 2H, 4H, ArH), 4.72 (s, 2H, ArCH₂), 4.50 (s, 2H, NCH₂), 3.82 (s, 3H, OCH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 186.8, 162.2, 161.0, 136.5, 136.1, 134.1, 129.2, 128.5, 128.1, 126.5, 124.2, 115.4, 56.0, 47.5, 47.0.

General Procedure for the Preparation of Imidazo[1,2-*a*]- pyrrolo-[3,4-*e*]pyridine Derivatives 4 &5

HKAs 1 or 2 (1mmol), dioxopyrrolidines 3 (1.1 mmol), solvent EtOH (15 mL) were charged into a 25mL round-bottom flask, and the mixture was stirred at 40 $^{\circ}$ C until the HKA was completely consumed. The mixture was cooled to room temperature. Then the precipitation was filtered and successively washed by ethanol to afford the pure products 4 and 5 in a good yield (81%–95%).

<u>Spectroscopic Data of Imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridine Derivatives</u>

<u>4–5</u>

2-Benzyl-4-(2,4-dichlorophenyl)-9a-hydroxy-5-nitro-2,3,3a,4,6,7,8,9a-octahydro -1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4a)

White solid; Mp 289–290 °C; IR (KBr): 3788, 3427, 1699, 1638, 1253, 1168, 735, 657 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.28 (br, 1H, NH), 7.57 (s, 1H, ArH), 7.32–7.41 (m, 2H, ArH), 7.28–7.34 (m, 2H, ArH), 7.19 (d, *J* = 7.1 Hz, 2H, ArH), 7.01 (d, *J* = 8.4 Hz, 1H, ArH), 6.90 (br, 1H, OH), 4.48 (AB, 2H, ArCH₂), 4.35 (d, *J* = 15.0 Hz, 1H, CH), 3.73–3.84 (m, 2H, NCH₂), 3.60–3.68 (m, 2H, NCH₂), 3.38–3.48 (m, 1H, CH), 2.92–2.97 (m, 1H, NCH₂), 2.70–2.76 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 169.1, 155.8, 139.2, 136.5, 133.9, 132.1, 129.9, 129.3, 128.0, 127.8, 127.4, 102.2, 82.5, 46.7, 46.3, 44.9, 44.1, 43.2, 36.2; HRMS (ESI-TOF): *m*/*z* calcd for C₂₂H₂₁Cl₂N₄O₄ [(M+H)⁺], 475.0943; found, 475.0941.

2-Benzyl-4-(4-chlorophenyl)-9a-hydroxy-5-nitro-2,3,3a,4,6,7,8,9a-octahydro-1*H*-imi dazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4b)

White solid; Mp 250–253 °C; IR (KBr): 3788, 3427, 1699, 1638, 1253, 1168, 735, 657 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.24$ (br, 1H, NH), 7.35–7.39 (m, 2H, ArH), 7.26–7.32 (m, 3H, ArH), 7.18–7.28 (m, 4H, ArH), 6.85 (br, 1H, OH), 4.40 (AB, 2H, ArCH₂), 4.24–4.28 (m, 1H, CH), 3.74–3.85 (m, 2H, NCH₂), 3.55–3.68 (m, 2H, NCH₂), 3.32–3.34 (m, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, OH), 4.40 (AB, 2H, ArCH₂), 4.24–4.28 (m, 1H, CH), 3.74–3.85 (m, 2H, NCH₂), 3.55–3.68 (m, 2H, NCH₂), 3.32–3.34 (m, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, OH), 4.40 (AB, 2H, NCH₂), 3.55–3.64 (m, 2H, NCH₂), 3.32–3.34 (m, 1H, CH), 3.74–3.85 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, OH), 4.40 (AB, 2H, NCH₂); $\delta = 0.24$ (br, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, CH), 2.82–2.90 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 0.24$ (br, 1H, 1CH), 2.82–2.90 (m, 2H, 1CH); ¹³C NMR (100 MHz, 1CH); ¹³C NMR (100 M

169.3, 155.5, 142.3, 136.6, 131.0, 130.0, 129.2, 128.2, 128.0; 128.0; 103.5, 82.7, 47.0, 46.8, 46.2, 44.1, 43.1, 38.6; HRMS (ESI-TOF): m/z calcd for $C_{22}H_{22}CIN_4O_4$ [(M+H)⁺], 441.1324; found, 441.1320.

2-Benzyl-4-(2,4-dichlorophenyl)-5-(4-fluorobenzoyl)-9a-hydroxy-2,3,3a,4,6,7,8,9 a-octahydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4c)

White solid; Mp 225–227 °C; IR (KBr): 3329, 1703, 1599, 1512, 1142, 843, 536 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.48$ (br, 1H, NH), 7.27–7.38 (m, 5H, ArH), 7.12–7.17 (m, 3H, ArH), 6.91–6.96 (m, 2H, ArH), 6.78–6.82 (m, 2H, ArH), 6.50 (br,1H, OH), 4.47 (d, J = 15.0 Hz, 1H, ArCH₂), 4.32 (d, J = 15.0 Hz, 1H, ArCH₂), 3.76 (d, J = 10.3 Hz, 1H, CH), 3.66–3.74 (m, 2H, NCH₂), 3.54–3.60 (m, 2H, NCH₂), 3.27–3.31 (m, 1H, CH), 3.01–3.08 (m, 1H, NCH₂), 2.57–2.65 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 188.1$, 169.7, 161.8 (d, J = 243.0 Hz), 159.9, 142.1, 139.4, 136.7, 133.0, 132.4, 131.6; 129.3, 128.5, 128.0, 127.3, 115.0 (d, J = 22.0 Hz), 114.8 (d, J = 22.0 Hz), 82.4, 82.2, 46.8, 46.2, 45.2, 43.4, 42.8, 36.2; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₅Cl₂FN₃O₃ [(M+H)⁺], 552.1252; found, 552.1253.

2-Benzyl-4-(4-chlorophenyl)-5-(4-fluorobenzoyl)-9a-hydroxy-2,3,3a,4,6,7,8,9a-octahy dro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4d)

White solid; Mp 224–226 °C; IR (KBr): 3312, 1703, 1595, 1512, 1215, 837, 580 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.55 (br, 1H, NH), 7.35–7.40 (m, 2H, ArH), 7.28–7.33 (m, 1H, ArH), 7.20 (d, J = 7.7 Hz, 4H, ArH), 7.02 (d, J = 8.0 Hz, 2H, ArH), 6.93–6.99 (m, 2H, ArH), 6.87–6.92 (m, 2H, ArH), 6.42 (br, 1H, OH), 4.44 (d, J = 15.0 Hz, 1H, ArCH₂), 4.38 (d, J = 15.0 Hz, 1H, ArCH₂), 3.71–3.74 (m, 1H, CH), 3.66–3.90 (m, 2H, NCH₂), 3.58–3.62 (m, 2H, NCH), 3.34–3.37 (m, 1H, CH), 3.04 (t, J = 9.5 Hz, 1H, NCH₂), 2.74–2.80 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 188.0$, 170.0, 162.0 (d, J = 242.0 Hz), 159.9, 145.5, 139.7, 136.8, 130.6, 130.2, 129.3, 128.6; 128.6, 128.1, 115.0 (d, J = 22.0 Hz), 114.8 (d, J = 22.0 Hz), 83.1, 82.7, 47.6, 47.1, 46.2, 43.4, 42.7, 40.6; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₆ClFN₃O₃ [(M+H)⁺], 518.1641; found, 518.1645.

2-Benzyl-5-(4-fluorobenzoyl)-9a-hydroxy-4-phenyl-2,3,3a,4,6,7,8,9a-octahydro-1*H*-i midazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4e)

White solid; Mp 194-197 °C; IR (KBr): 3324, 1701, 1596, 1515, 1214, 1008, 739 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.57$ (br, 1H, NH), 7.32–7.38 (m, J = 6.8 Hz, 2H, ArH), 7.29–7.34 (m, 1H, ArH), 7.20 (d, J = 6.8 Hz, 2H, ArH), 7.11–7.15 (m, 2H, ArH), 7.01–7.06 (m, 1H, ArH), 7.00 (d, J = 6.8 Hz, 2H, ArH), 6.86–6.96 (m, 4H, ArH), 6.36 (br, 1H, OH), 4.43 (AB, 2H, ArCH₂), 3.72–3.75 (m, 1H, CH), 3.67–3.74 (m, 2H, NCH₂), 3.57–3.61 (m, 1H, NCH₂), 3.48–3.52 (m, 1H, NCH₂), 3.05 (t, J = 9.3 Hz, 1H, NCH₂), 2.78–2.83 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 187.9$, 170.1, 161.5 (d, J = 232.0 Hz); 160.0, 146.4, 139.7, 136.8, 129.2, 128.6, 128.5, 128.3; 128.1, 128.0; 126.0; 114.8 (d, J = 21.0 Hz); 114.6 (d, J = 21.0 Hz), 83.4, 82.8, 47.6, 47.2, 46.2, 43.4, 42.6, 39.3; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₇FN₃O₃ [(M+Na)⁺], 506.1850; found, 506.1859.

2-Benzyl-5-(4-fluorobenzoyl)-9a-hydroxy-4-(4-methoxyphenyl)-2,3,3a,4,6,7,8,9a-octa hydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4f)

White solid; Mp 215-218 °C; IR (KBr): 3462, 1696, 1599, 1511, 1240, 751, 649 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.59$ (br, 1H, NH), 7.37–7.42 (m, 2H, ArH), 7.30–7.34 (m, 1H, ArH), 7.22 (d, J = 7.4 Hz, 2H, ArH), 6.92–7.00 (m, 6H, ArH), 6.74 (d, J = 8.3 Hz,

2H, ArH), 6.34 (br, 1H, OH), 4.43 (AB, 2H, ArCH₂), 3.76–3.78 (m, 1H, CH), 3.70–3.76 (m, 2H, CH₂), 3.66 (s, 3H, OCH₃), 3.60–3.63 (m, 1H, CH), 3.50–3.54 (m, 1H, NCH₂), 3.03–3.06 (m, 1H, NCH₂), 2.78–2.83 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 187.8, 170.1, 160.5 (d, *J* =234.0 Hz); 159.9, 157.6, 139.7, 138.2, 136.8, 129.2, 129.2, 128.6; 128.0; 114.8 (d, *J* =21.0 Hz), 114.6 (d, *J* =21.0 Hz); 113.5; 83.6, 82.7, 55.3, 47.8, 47.1, 46.2, 43.3, 42.6, 39.0; HRMS (ESI-TOF): *m*/*z* calcd for C₃₀H₂₉FN₃O₄ [(M+H)⁺], 514.2137; found, 514.2142.

2-Benzyl-4-(2,4-dichlorophenyl)-5-(2-fluorobenzoyl)-9a-hydroxy-2,3,3a,4,6,7,8,9a-oct ahydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4g)

White solid; Mp 251-254 °C; IR (KBr): 3333, 1703, 1602, 1516, 1018, 755, 541 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.34 (br, 1H, NH), 7.34–7.40 (m, 2H, ArH), 7.24–7.32 (m, 3H, ArH), 7.15–7.23 (m, 3H, ArH), 6.86–6.98 (m, 2H, ArH), 6.54–6.58 (m, 1H, ArH), 6.53 (br,1H, OH), 4.47–4.53 (m, 1H, ArCH₂), 4.31–4.37 (m, 1H, ArCH₂), 3.84–3.88 (m, 1H, CH), 3.70–3.76 (m, 2H, CH₂), 3.59–3.63 (m, 1H, CH), 3.31–3.38 (m, 2H, NCH₂), 3.00–3.08 (m, 1H, NCH₂), 2.54–2.62 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 184.4, 169.7, 159.4, 141.7, 136.7, 133.0, 132.4, 131.4; 129.9, 128.0, 127.0, 124.4, 115.7 (d, *J* =22.0 Hz), 115.5 (d, *J* =22.0 Hz), 82.3, 82.4, 46.6, 46.2, 45.1, 43.3, 42.8, 35.6; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₂₅Cl₂FN₃O₃ [(M+H)⁺], 552.1252; found, 552.1250.

2-Benzyl-5-(2-fluorobenzoyl)-9a-hydroxy-4-phenyl-2,3,3a,4,6,7,8,9a-octahydro-1*H*-i midazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4h)

White solid; Mp 216–219 °C; IR (KBr): 3430, 1701, 1599, 1517, 1135, 748, 551 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.40$ (br, 1H, NH), 7.36–7.41 (m, 2H, ArH), 7.28–7.33 (m, 1H, ArH), 7.16–7.24 (m, 3H, ArH), 6.95–7.08 (m, 4H, ArH), 6.84–6.91 (m, 3H, ArH), 6.58–6.64 (m, 1H, ArH), 6.43 (br, 1H, OH), 4.43 (AB, 2H, ArCH₂), 3.71–3.77 (m, 2H, NCH₂), 3.60–3.63 (m, 1H, CH), 3.47–3.53 (m, 2H, NCH₂), 3.38–3.42 (m, 1H, CH), 3.06 (t, J = 9.5 Hz, 1H, NCH₂), 2.74–2.79 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 184.3$, 170.0, 159.4; 145.9, 136.8, 130.9, 129.7, 129.2, 128.6, 128.2, 128.0; 127.8, 125.9; 124.1; 115.6; 115.4, 84.7, 82.6, 47.3, 47.0, 46.2, 43.3, 42.7, 39.3; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₇FN₃O₃ [(M+H)⁺], 484.2031; found, 484.2031.

2-Benzyl-5-(2-fluorobenzoyl)-9a-hydroxy-4-(4-methoxyphenyl)-2,3,3a,4,6,7,8,9a-octa hydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4i)

White solid; Mp 221–224 °C; IR (KBr): 3435, 1700, 1599, 1513, 1244, 749, 547 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.39$ (br, 1H, NH), 7.36–7.40 (m, 2H, ArH), 7.30–7.33 (m, 1H, ArH), 7.17–7.27 (m, 3H, ArH), 6.96-7.02 (m, 1H, ArH), 6.87– 6.93 (m, 1H, ArH), 6.80 (d, J = 6.7 Hz, 2H, ArH), 6.60–6.68 (m, 3H, ArH), 6.40 (br, 1H, OH), 4.43 (AB, 2H, ArCH₂), 3.70–3.74 (m, 1H, CH), 3.64–3.68 (m, 2H, CH₂), 3.63 (s, 3H, OCH₃), 3.45–3.51 (m, 1H, CH), 3.36–3.46 (m, 2H, NCH₂), 3.01–3.08 (m, 1H, NCH₂), 2.62–2.68 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 184.3$, 170.1, 159.3; 157.5, 137.9, 136.8, 129.6, 129.2, 129.1, 128.6, 128.0; 124.1; 115.5, 113.2; 84.9, 82.7, 55.3, 47.4, 47.0, 46.2, 43.3, 42.7, 38.7; HRMS (ESI-TOF): m/z calcd for C₃₀H₂₉FN₃O₄ [(M+H)⁺], 514.2137; found, 514.2142.

2-Benzyl-5-(4-chlorobenzoyl)-4-(2,4-dichlorophenyl)-9a-hydroxy-2,3,3a,4,6,7,8,9a-oc tahydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4j)

White solid; Mp 223-226 °C; IR (KBr): 3424, 1701, 1601, 1511, 1204, 841, 543 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.50$ (br, 1H, NH), 7.31–7.40 (m, 5H, ArH), 7.17–7.25

(m, 5H, ArH), 6.80 (d, J = 7.1 Hz, 2H, ArH), 6.53 (br, 1H, OH), 4.49 (d, J = 14.8 Hz, 1H, ArCH₂), 4.35 (d, J = 14.8 Hz, 1H, ArCH₂), 3.96–3.99 (m, 1H, CH), 3.70–3.78 (m, 2H, NCH₂), 3.59–3.63 (m, 1H, CH₂), 3.45–3.51 (m, 1H, NCH₂), 3.29–3.33 (m, 1H, CH), 3.04–3.09 (m, 1H, NCH₂), 2.63–2.67 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 188.0$, 169.7, 159.9, 142.0, 141.6, 136.7, 133.0, 132.6, 132.4; 131.6, 129.3, 128.5, 128.1, 128.1, 128.0, 127.8, 127.3, 82.4, 82.2, 46.7, 46.2, 45.2, 43.4, 42.8, 36.2; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₅Cl₃N₃O₃ [(M+H)⁺], 568.0956; found, 568.0949.

2-Benzyl-5-(4-chlorobenzoyl)-4-(4-chlorophenyl)-9a-hydroxy-2,3,3a,4,6,7,8,9a-octah ydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4k)

White solid; Mp 230–233 °C; IR (KBr): 3319, 1703, 1599, 1513, 1281, 827, 546 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.54 (br, 1H, NH), 7.35–7.40 (m, 2H, ArH), 7.28–7.32 (m, 1H, ArH), 7.17–7.23 (m, 6H, ArH), 7.03 (d, *J* = 7.9 Hz, 2H, ArH), 6.86 (d, *J* = 7.8 Hz, 2H, ArH), 6.43 (br, 1H, OH), 4.44 (d, *J* = 15.1 Hz, 1H, ArCH₂), 4.38 (d, *J* = 15.1 Hz, 1H, ArCH₂), 3.72–3.74 (m, 1H, CH), 3.69–3.72 (m, 2H, CH₂), 3.59–3.62 (m, 1H, CH₂), 3.47–3.50 (m, 1H, NCH₂), 3.04 (t, *J* = 9.5 Hz, 1H, NCH), 2.74–2.80 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 187.6, 170.0, 159.9, 145.3, 141.9, 136.8, 132.6, 130.5, 130.1, 129.2, 128.2; 128.2, 128.1, 128.0, 82.9, 82.6, 47.5, 46.9, 46.2, 43.4, 42.7, 39.0; HRMS (ESI-TOF): *m*/*z* calcd for C₂₉H₂₆Cl₂N₃O₃ [(M+H)⁺], 534.1346; found, 534.1348.

2-Benzyl-5-(4-chlorobenzoyl)-9a-hydroxy-4-phenyl-2,3,3a,4,6,7,8,9a-octahydro-1*H*-i midazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4l)

White solid; Mp 200–202 °C; IR (KBr): 3325, 1703, 1596, 1515, 1278, 1013, 751 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.57$ (br, 1H, NH), 7.35–7.39 (m, 2H, ArH), 7.26–7.32 (m, 1H, ArH), 7.13–7.22 (m, 6H, ArH), 7.05–7.09 (m, 1H, ArH), 6.99–7.04 (m, 2H, ArH), 6.85 (d, J = 7.7 Hz, 2H, ArH), 6.37 (br, 1H, OH), 4.42 (AB, 2H, ArCH₂), 3.74–3.77 (m, 1H, CH), 3.64–3.72 (m, 2H, CH₂), 3.57–3.62 (m, 1H, NCH₂), 3.49–3.53 (m, 1H, NCH₂), 3.05 (t, J = 9.4 Hz, 1H, NCH₂), 2.78–2.83 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 187.7$, 170.1, 160.1, 146.4, 142.1, 136.9, 132.6, 129.3, 128.4, 128.2, 128.2, 128.0, 126.1, 83.4, 82.7, 47.7, 47.2, 46.2, 43.4, 42.7, 40.4; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₇ClN₃O₃ [(M+H)⁺], 500.1735; found, 500.1743.

2-Benzyl-5-(4-chlorobenzoyl)-9a-hydroxy-4-(4-methoxyphenyl)-2,3,3a,4,6,7,8,9a-octa hydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4m)

White solid; Mp 237–239 °C; IR (KBr): 3328, 1699, 1597, 1511, 1246, 1019, 833 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.55 (br, 1H, NH), 7.35–7.38 (m, 2H, ArH), 7.29–7.32 (m, 1H, ArH), 7.16–7.21 (m, 4H, ArH), 6.92 (d, *J* = 7.8 Hz, 2H, ArH), 6.87 (d, *J* = 7.8 Hz, 2H, ArH), 6.72 (d, *J* = 7.8 Hz, 2H, ArH), 6.32 (br, 1H, OH), 4.43 (AB, 2H, ArCH₂), 3.68–3.72 (m, 1H, CH), 3.68 (s, 3H, OCH₃), 3.58–3.64 (m, 2H, CH₂), 3.50 (d, *J* = 7.6 Hz, 1H, CH), 3.02 (t, *J* = 9.3 Hz, 1H, NCH₂), 2.75–2.80 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 187.5, 170.1, 160.7; 157.6, 142.0, 138.2, 136.8, 132.6, 129.2, 129.2, 128.3, 128.0; 128.0, 113.5, 83.6, 82.7, 55.3, 47.8, 47.1, 46.2, 43.3, 42.6, 38.8; HRMS (ESI-TOF): *m/z* calcd for C₃₀H₂₉ClN₃O₄ [(M+H)⁺], 530.1841; found, 530.1846.

5-Benzoyl-2-benzyl-4-(2,4-dichlorophenyl)-9a-hydroxy-2,3,3a,4,6,7,8,9a-octahydro-1 *H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4n)

White solid; Mp 222–225 °C; IR (KBr): 3283, 1703, 1602, 1513, 1208, 701, 600 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.53$ (br, 1H, NH), 7.26–7.40 (m, 5H, ArH),

7.10–7.21 (m, 6H, ArH), 6.77 (d, J = 7.4 Hz, 2H, ArH), 6.52 (br, 1H, OH), 4.49 (d, J = 15.0 Hz, 1H, ArCH₂), 4.34 (t, J = 15.0 Hz, 1H, ArCH₂), 3.98–4.02 (m, 1H, CH), 3.73–7.77 (m, 2H, CH₂), 3.59–3.63 (m, 1H, CH₂), 3.45–3.49 (m, 1H, NCH₂), 3.30 (t, J = 8.9 Hz, 1H, NCH₂), 3.06 (t, J = 9.8 Hz, 1H, CH), 2.64 (t, J = 8.9 Hz, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 189.3$, 169.7, 160.0, 142.9, 142.2, 136.7, 133.1, 132.4, 131.5, 129.2, 128.8, 128.4, 128.0, 127.8, 127.4, 127.2, 125.8, 82.4, 82.1, 46.7, 46.2, 45.2, 43.4, 42.8, 36.3; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₆Cl₂N₃O₃ [(M+H)⁺], 534.1346; found, 534.1351.

5-Benzoyl-2-benzyl-4-(4-chlorophenyl)-9a-hydroxy-2,3,3a,4,6,7,8,9a-octahydro-1*H*-i midazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (40)

White solid; Mp 216–219 °C; IR (KBr): 3432, 1704, 1598, 1511, 1281, 1012, 694 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.56 (br, 1H, NH), 7.35–7.38 (m, 2H, ArH), 7.29–7.33 (m, 1H, ArH), 7.10–7.24 (m, 7H, ArH), 7.00–7.04 (m, 2H, ArH), 6.83–6.87 (m, 2H, ArH), 6.41 (br, 1H, OH), 4.44 (d, *J* = 14.8 Hz, 1H, ArCH₂), 4.39 (d, *J* = 14.8 Hz, 1H, ArCH₂), 3.72–3.74 (m, 1H, CH), 3.68–3.72 (m, 2H, CH₂), 3.59–3.63 (m, 1H, CH₂), 3.46–3.50 (m, 1H, NCH₂), 3.05 (t, *J* = 8.7 Hz, 1H, NCH₂), 2.75–2.83 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 189.1, 170.0, 159.8, 145.5, 143.1, 136.8, 130.4, 130.1, 129.2, 128.0, 128.0, 128.0, 126.3, 82.9, 82.7, 47.5, 47.0, 46.2, 43.4, 42.6, 39.1; HRMS (ESI-TOF): *m*/*z* calcd for C₂₉H₂₇ClN₃O₃ [(M+H)⁺], 500.1735; found, 500.1735.

5-Benzoyl-2-benzyl-9a-hydroxy-4-phenyl-2,3,3a,4,6,7,8,9a-octahydro-1*H*-imidazo[1, 2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4p)

White solid; Mp 202–205 °C; IR (KBr): 3324, 1702, 1597, 1513, 1277, 1009, 698 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 9.60$ (br, 1H, NH), 7.36–7.40 (m, 2H, ArH), 7.29–7.34 (m, 2H, ArH), 7.22–7.26 (m, 2H, ArH), 7.10–7.20 (m, 5H, ArH), 7.04–7.09 (m, 1H, ArH), 7.01 (d, J = 7.5 Hz, 2H, ArH), 6.85 (d, J = 7.5 Hz, 2H, ArH), 6.36 (br, 1H, OH), 4.42 (AB, 2H, ArCH₂), 3.73–3.77 (m, 1H, CH), 3.68–3.74 (m, 2H, CH₂), 3.58–3.65 (m, 1H, CH₂), 3.38–3.53 (m, 1H, NCH₂), 3.32–3.36 (m, 1H, CH), 3.07 (t, J = 9.6 Hz, 1H, NCH₂), 2.81–2.85 (m, 1H, NCH₂); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 189.5$, 170.5, 160.4; 146.8, 143.7, 137.2, 129.6, 129.2, 128.7, 128.4, 128.4, 128.3; 126.8, 126.3, 83.7, 83.1, 48.0, 47.6, 46.6, 43.8, 43.1, 40.4; HRMS (ESI-TOF): m/z calcd for C₂₉H₂₈N₃O₃ [(M+H)⁺], 466.2125; found,466.2132.

5-Benzoyl-2-benzyl-9a-hydroxy-4-(4-methoxyphenyl)-2,3,3a,4,6,7,8,9a-octahydro-1*H* -imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4q)

White solid; Mp 217–230 °C; IR (KBr): 3431, 1698, 1598, 1511, 1245, 1021, 702 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.59 (br, 1H, NH), 7.35–3.40 (m, 2H, ArH), 7.28–7.32 (m, 1H, ArH), 7.16–7.22 (m, 3H, ArH), 7.11–7.15 (m, 2H, ArH), 6.92 (d, J = 8.4 Hz, 2H, ArH), 6.86 (d, J = 7.2 Hz, 2H, ArH), 6.71 (d, J = 8.4 Hz, 2H, ArH), 6.32 (br, 1H, OH), 4.41 (AB, 2H, ArCH₂), 3.75 (d, J = 8.8 Hz, 1H, CH), 3.69–3.74 (m, 2H, CH₂), 3.66 (s, 3H, OCH₃), 3.57–3.61 (m, 1H, CH), 3.51 (t, J = 6.9 Hz, 1H, CH₂), 3.04 (t, J = 9.6 Hz, 1H, NCH₂), 2.77–2.83 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 189.0, 170.1, 160.7; 157.5, 143.3, 138.3, 136.8, 129.2, 129.2, 128.0, 127.9, 126.4, 113.4; 83.6, 82.8, 55.3, 47.8, 47.1, 46.2, 43.4, 42.6, 38.9; HRMS (ESI-TOF): m/z calcd for C₃₀H₃₀N₃O₄ [(M+H)⁺], 496.2231; found, 496.2239.

2-Benzyl-4-(2,4-dichlorophenyl)-9a-hydroxy-5-(4-methylbenzoyl)-2,3,3a,4,6,7,8,9a-o ctahydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4r)

White solid; Mp 234–237 °C; IR (KBr): 3788, 3427, 1699, 1638, 1253, 1168, 735, 657 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.58$ (br, 1H, NH), 7.43 (s, 1H, ArH), 7.32–7.39 (m, 4H, ArH), 7.20–7.25 (m, 3H, ArH), 6.96 (d, J = 7.0 Hz, 2H, ArH), 6.70 (d, J = 7.0 Hz, 2H, ArH), 6.50 (br, 1H, OH), 4.51 (d, J = 14.7 Hz, 1H, ArCH₂), 4.36 (d, J = 14.8 Hz, 1H, ArCH₂), 4.03–4.07 (m, 1H, CH), 3.70–3.78 (m, 2H, CH₂), 3.62 (d, J = 7.5 Hz, 1H, CH), 3.48 (d, J = 5.4 Hz, 1H, NCH₂), 3.31 (d, J = 7.9 Hz, 1H, NCH₂), 3.05 (t, J = 9.4 Hz, 1H, NCH₂), 2.68–3.73 (m, 1H, NCH₂), 2.23 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 189.1$, 169.8, 160.0, 142.2, 140.1, 137.4, 136.7, 133.1, 132.4, 131.5, 129.2, 128.5, 128.0, 127.2, 125.9, 82.4, 82.0, 46.7, 46.2, 45.2, 43.4, 42.7, 36.4, 21.2; HRMS (ESI-TOF): m/z calcd for C₃₀H₂₈Cl₂N₃O₃ [(M+H)⁺], 548.1502; found, 548.1500.

2-Benzyl-4-(4-chlorophenyl)-9a-hydroxy-5-(4-methylbenzoyl)-2,3,3a,4,6,7,8,9a-octah ydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4s)

White solid; Mp 228–230 °C; IR (KBr): 3312, 1703, 1595, 1512, 1215, 837, 580 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.58 (br, 1H, NH), 7.35–7.39 (m, 2H, ArH), 7.28–7.32 (m, 1H, ArH), 7.18–7.24 (m, 4H, ArH), 7.05 (d, *J* = 7.9 Hz, 2H, ArH), 6.95 (d, *J* = 7.4 Hz, 2H, ArH), 6.77 (d, *J* = 7.4 Hz, 2H, ArH), 6.37 (br, 1H, OH), 4.43 (d, *J* = 15.3 Hz, 1H, ArCH₂), 4.38 (d, *J* = 15.3 Hz, 1H, ArCH₂), 3.74–3.78 (m, 1H, CH), 3.65–3.71 (m, 2H, CH₂), 3.56–3.60 (m, 1H, CH₂), 3.46–3.50 (m, 1H, NCH₂), 3.35–3.39 (m, 1H, CH), 3.03 (t, *J* = 9.5 Hz, 1H, NCH₂), 2.78–2.83 (m, 1H, NCH₂), 2.21 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 189.1, 170.0, 159.9, 145.5, 140.3, 137.4, 136.8, 130.4, 130.1, 129.2, 128.5, 128.0, 128.0, 126.4, 82.8, 82.7, 47.6, 47.0, 46.1, 43.4, 42.6, 39.1, 21.2; HRMS (ESI-TOF): *m*/*z* calcd for C₃₀H₂₉ClN₃O₃ [(M+H)⁺], 514.1892; found, 514.1890.

2-Benzyl-9a-hydroxy-5-(4-methylbenzoyl)-4-phenyl-2,3,3a,4,6,7,8,9a-octahydro-1*H*-i midazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4t)

White solid; Mp 213–216 °C; IR (KBr): 3335, 1704, 1597, 1514, 1279, 907, 698 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.61 (br, 1H, NH), 7.35–7.40 (m, 2H, ArH), 7.25–7.29 (m, 1H, ArH), 7.10–7.25 (m, 4H, ArH), 7.02–7.08 (m, 3H, ArH), 6.92 (d, J = 7.6 Hz, 2H, ArH), 6.76 (d, J = 7.6 Hz, 2H, ArH), 6.30 (br, 1H, OH), 4.41 (AB, 2H, ArCH₂), 3.73–3.77 (m, 1H, CH), 3.62–3.68 (m, 2H, CH₂), 3.57–3.61 (m, 1H, CH), 3.48–3.52 (m, 1H, NCH₂), 3.04 (t, J = 9.5 Hz, 1H, NCH₂), 2.82–2.88 (m, 1H, NCH₂), 2.20 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 189.0, 170.1, 160.0; 146.5, 140.4, 137.3, 136.8, 129.2, 128.8, 128.4, 128.3; 128.1, 128.0; 127.8; 126.5; 126.0, 83.2, 82.7, 47.7, 47.1, 46.1, 43.4, 42.6, 39.3, 21.2; HRMS (ESI-TOF): m/z calcd for C₃₀H₃₀N₃O₃ [(M+H)⁺], 480.2287; found, 480.2287.

2-Benzyl-9a-hydroxy-4-(4-methoxyphenyl)-5-(4-methylbenzoyl)-2,3,3a,4,6,7,8,9a-oct ahydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4u)

White solid; Mp 222–225 °C; IR (KBr): 3416, 1700, 1598, 1510, 1246, 1022, 758 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.60 (br, 1H, NH), 7.35–7.40 (m, 2H, ArH), 7.29–7.33 (m, 1H, ArH), 7.20 (d, *J* = 7.1 Hz, 2H, ArH), 6.91–6.97 (m, 4H, ArH), 6.79 (d, *J* = 7.9 Hz, 2H, ArH), 6.73 (d, *J* = 8.6 Hz, 2H, ArH), 6.26 (br, 1H, OH), 4.40 (AB, 2H, ArCH₂), 3.65–3.69 (m, 1H, CH), 3.61–3.67 (m, 2H, CH₂), 3.63 (s, 3H, OCH₃), 3.57–3.61 (m, 1H, CH), 3.48–3.52 (m, 1H, CH₂), 3.02 (t, *J* = 9.5 Hz, 1H, NCH₂), 2.80–2.84 (m, 1H, NCH₂), 2.21 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 189.0, 170.2, 160.7, 157.5, 140.5, 138.3, 137.3, 136.8, 129.2, 129.2, 128.4, 128.0, 126.5, 113.5, 83.5, 82.8, 55.3, 47.8, 47.1, 46.1, 43.4, 42.6, 38.9, 21.2; HRMS (ESI-TOF): *m*/*z* calcd for C₃₁H₃₂N₃O₄ [(M+H)⁺], 510.2387; found, 510.2398. 2-Benzyl-4-(2,4-dichlorophenyl)-9a-hydroxy-5-(4-methoxybenzoyl)-2,3,3a,4,6,7,8,9aoctahydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4v)

White solid; Mp 229–231 °C; IR (KBr): 3419, 1703, 1598, 1509, 1250, 838, 749 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.54$ (br, 1H, NH), 8.29 (br, 1H, OH), 7.41 (s, 1H, ArH), 7.26–7.37 (m, 4H, ArH), 7.15–7.18 (m, 3H, ArH), 6.76 (d, J = 8.6 Hz, 2H, ArH), 6.66 (d, J = 8.6 Hz, 2H, ArH), 4.47 (d, J = 15.0 Hz, 1H, ArCH₂), 4.31 (d, J = 15.0 Hz, 1H, ArCH₂), 4.05–4.09 (m, 1H, CH), 3.67–3.71 (m, 2H, CH₂), 3.64 (s, 3H, OCH₃), 3.55–3.59 (m, 1H, CH), 3.43–3.47 (m, 1H, NCH₂), 3.26–3.30 (m, 1H, NCH₂), 2.98–3.02 (m, 1H, NCH₂), 2.64–2.68 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 188.6$, 169.8, 160.1, 159.3, 142.2, 136.7, 135.3, 133.1, 132.3, 131.5, 129.2, 128.6, 128.6, 128.0, 127.6, 127.3, 113.3, 82.4, 82.0, 55.5, 46.7, 46.2, 45.3, 43.4, 42.7, 36.5; HRMS (ESI-TOF): m/zcalcd for C₃₀H₂₈Cl₂N₃O₄ [(M+Na)⁺], 586.1271; found, 586.1270.

2-Benzyl-4-(4-chlorophenyl)-9a-hydroxy-5-(4-methoxybenzoyl)-2,3,3a,4,6,7,8,9a-octa hydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4w)

White solid; Mp 230–232 °C; IR (KBr): 3420, 1705, 1597, 1510, 1249, 1017, 649 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.59 (br, 1H, NH), 7.35–7.40 (m, 2H, ArH), 7.28–7.33 (m, 1H, ArH), 7.19–7.24 (m, 4H, ArH), 7.08 (d, J = 8.1 Hz, 2H, ArH), 6.86 (d, J = 8.2 Hz, 2H, ArH), 6.69 (d, J = 8.2 Hz, 2H, ArH), 6.36 (br, 1H, OH), 4.342 (AB, 2H, ArCH₂), 3.81–3.84 (m, 1H, CH), 3.72 (s, 3H, OCH₃), 3.67–3.71 (m, 2H, CH₂), 3.56–3.60 (m, 1H, CH), 3.46–3.50 (m, 1H, NCH₂), 3.03 (t, J = 4.8 Hz, 1H, NCH₂), 2.79–2.84 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 188.5, 170.0, 159.9, 159.3, 145.5, 136.8, 135.5, 130.4, 130.1, 129.2, 128.1, 128.0, 128.1, 113.2, 82.8, 82.7, 55.4, 47.6, 47.0, 46.1, 43.4, 42.6, 39.1; HRMS (ESI-TOF): m/z calcd for C₃₀H₂₉ClN₃O₄ [(M+H)⁺], 530.1841; found, 530.1840.

2-Benzyl-9a-hydroxy-5-(4-methoxybenzoyl)-4-phenyl-2,3,3a,4,6,7,8,9a-octahydro-1*H* -imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4x)

White solid; Mp 192–194 °C; IR (KBr): 3328, 1705, 1594, 1247, 1023,694, 576 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.62$ (br, 1H, NH), 7.35–3.40 (m, 2H, ArH), 7.28–7.32 (m, 1H, ArH), 7.15–7.22 (m, 4H, ArH), 7.05–7.08 (m, 3H, ArH), 6.86 (d, J =8.1 Hz, 2H, ArH), 6.67 (d, J = 8.1 Hz, 2H, ArH), 6.28 (br, 1H, OH), 4.41 (AB, 2H, ArCH₂), 3.80–3.84 (m, 1H, CH), 3.69–3.75 (m, 2H, CH₂), 3.67 (s, 3H, OCH₃), 3.56–3.60 (m, 1H, CH), 3.49–3.53 (m, 1H, NCH₂), 3.43–3.47 (m, 1H, NCH₂), 3.05 (t, J = 9.4 Hz, 1H, NCH₂), 2.84–2.89 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 188.5$, 170.1, 160.1; 159.3, 146.5, 136.8, 135.6, 129.2, 128.3, 128.2, 128.2, 128.0, 126.0, 113.1, 83.2, 82.7, 55.4, 47.7, 47.2, 46.1, 43.4, 42.6, 39.4; HRMS (ESI-TOF): m/z calcd for C₃₀H₃₀N₃O₄ [(M+H)⁺], 496.2231; found, 496.2239.

2-Benzyl-9a-hydroxy-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl)-2,3,3a,4,6,7,8,9a-o ctahydro-1*H*-imidazo[1,2-*a*]pyrrolo[3,4-*e*]pyridin-1-one (4y)

White solid; Mp 216–219 °C; IR (KBr): 3431, 1698, 1599, 1510, 1246, 833, 408 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.62 (br, 1H, NH), 7.35–7.40 (m, 2H, ArH), 7.28–7.32 (m, 1H, ArH), 7.20 (d, J = 7.4 Hz, 2H, ArH), 6.97 (d, J = 8.4 Hz, 2H, ArH), 6.88 (d, J = 8.4 Hz, 2H, ArH), 6.74 (d, J = 8.4 Hz, 2H, ArH), 6.68 (d, J = 8.4 Hz, 2H, ArH), 6.25 (br, 1H, OH), 4.40 (AB, 2H, ArCH₂), 3.74–3.78 (m, 1H, CH), 3.69 (s, 3H, OCH₃), 3.65–3.69 (m, 2H, CH₂), 3.66 (s, 3H, OCH₃), 3.61–3.65 (m, 1H, CH), 3.55–3.59 (m, 1H, CH₂), 3.48–3.52 (m, 1H, CH₂), 3.02 (t, J = 9.5 Hz, 1H, NCH₂), 2.81–2.86 (m, 1H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 188.4, 170.2, 160.0, 159.3, 157.5, 138.4, 136.8, 135.6, 129.2, 128.2, 128.0, 113.5, 113.1, 83.5, 82.8, 55.4, 55.3, 47.9, 47.1, 46.1, 43.4, 42.6, 39.0; HRMS (ESI-TOF): m/z calcd for $C_{31}H_{32}N_3O_5$ [(M+H)⁺], 526.2336; found, 526.2344.

2-Benzyl-4-(2,4-dichlorophenyl)-5-(4-fluorobenzoyl)-10a-hydroxy-2,3,3a,4,6,7,8,9-oct ahydropyrrolo[3',4':5,6]pyrido[1,2-*a*]pyrimidin-1(10a*H*)-one (5a)

White solid; Mp 187-190 °C; IR (KBr): 3403, 1703, 1595, 1545, 1237, 841, 541 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 12.55 (br, 1H, NH), 7.17–7.40 (m, 8H, ArH), 6.90–6.96 (m, 2H, ArH), 6.68–6.74 (m, 2H, ArH), 6.46 (br, 1H, OH), 4.47 (d, J = 14.7 Hz, 1H, ArCH₂), 4.33 (d, J = 14.7 Hz, 1H, ArCH₂), 3.79–3.83 (m, 1H, CH), 3.41–3.54 (m, 2H, CH₂), 3.24–3.28 (m, 1H, CH), 3.12–3.18 (m, 1H, NCH₂), 2.64–2.72 (m, 1H, NCH₂), 1.79–1.99 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 185.8, 169.8, 157.5, 141.8, 139.8, 136.7, 133.0, 132.7, 131.5, 129.2, 128.8, 128.5, 128.0, 127.8, 127.4, 115.1 (d, J =22.0 Hz), 114.9 (d, J =22.0 Hz), 83.9, 83.2, 46.5, 46.3, 44.4, 40.6, 40.4, 38.5, 36.4, 20.7; HRMS (ESI-TOF): m/z calcd for C₃₀H₂₇Cl₂FN₃O₃ [(M+H)⁺], 566.1408; found, 566.1412.

2-Benzyl-5-(4-chlorobenzoyl)-4-(2,4-dichlorophenyl)-10a-hydroxy-2,3,3a,4,6,7,8,9-oc tahydropyrrolo[3',4':5,6]pyrido[1,2-*a*]pyrimidin-1(10a*H*)-one (5b)

White solid; Mp 193–196 °C; IR (KBr): 3402, 1703, 1593, 1547, 1244, 842,517 cm⁻¹; ¹H NMR (400 MHz, CDCl₃-*d*): δ =12.61 (br, 1H, NH), 7.25–7.29 (m, 3H, ArH), 7.17–7.21 (m, 1H, ArH), 7.12–7.16 (m, 2H, ArH), 7.05–7.11 (m, 2H, ArH), 7.03 (d, *J* = 8.1 Hz, 2H, ArH), 6.65 (d, *J* = 8.1 Hz, 2H, ArH), 4.35 (AB, 2H, ArCH₂), 4.09 (s, 1H, CH), 3.82 (br, 1H, OH), 3.31–3.44 (m, 4H, CH₂), 3.09–3.18 (m, 2H, CH₂), 2.78 (t, *J* = 8.4 Hz, 1H, CH), 1.79–1.92 (m, 2H, NCH₂); ¹³C NMR (100 MHz, CDCl₃-*d*): δ = 186.6, 169.7, 157.5, 140.6, 140.3, 134.9, 133.6, 133.3, 132.8, 131.1, 129.1, 128.3, 128.1, 127.9, 127.1, 127.0, 84.3, 82.9, 47.2, 46.7, 44.7, 39.8, 38.6, 36.1, 20.7; HRMS (ESI-TOF): m/z calcd for C₃₀H₂₇Cl₃N₃O₃ [(M+H)⁺], 582.1113; found, 582.1112.

5-Benzoyl-2-benzyl-4-(2,4-dichlorophenyl)-10a-hydroxy-2,3,3a,4,6,7,8,9-octahydropy rrolo[3',4':5,6]pyrido[1,2-*a*]pyrimidin-1(10a*H*)-one (5c)

White solid; Mp 188–190 °C; IR (KBr): 3456, 1703, 1598, 1544, 1049, 700, 459 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ =12.61 (br, 1H, NH), 7.33–7.41 (m, 5H, ArH), 7.09–7.31 (m, 6H, ArH), 6.65–6.61 (m, 2H, ArH), 6.44 (br, 1H, OH), 4.48 (d, J = 14.9 Hz, 1H, ArCH₂), 4.34 (d, J = 14.9 Hz, 1H, ArCH₂), 3.85 (d, J = 1.6 Hz, 1H, CH), 3.55–3.61 (m, 2H, CH₂), 3.44–3.51 (m, 2H, CH₂), 3.25–3.29 (m, 1H, CH), 3.14–3.18 (m, 1H, NCH₂), 2.70–2.76 (m, 1H, NCH₂), 1.90–1.96 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 186.9, 169.9, 157.6, 143.3, 141.9, 136.7, 133.1, 132.6, 131.4; 129.2, 128.4, 128.1, 128.0, 127.6, 127.3, 125.6, 83.8, 83.3, 46.5, 46.3, 44.5, 40.6, 38.5, 36.5, 20.8; HRMS (ESI-TOF): m/z calcd for C₃₀H₂₈Cl₂N₃O₃ [(M+H)⁺], 548.1502; found, 548.1501.

2-Benzyl-4-(2,4-dichlorophenyl)-10a-hydroxy-5-(4-methylbenzoyl)-2,3,3a,4,6,7,8,9-o ctahydropyrrolo[3',4':5,6]pyrido[1,2-*a*]pyrimidin-1(10a*H*)-one (5d)

White solid; Mp 195–197 °C; IR (KBr): 3422, 1702, 1545, 1247, 1123, 761, 703 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ =12.72 (br, 1H, NH), 7.39–7.45 (m, 4H, ArH), 7.35–7.39 (m, 1H, ArH), 7.31–7.35 (m, 1H, ArH), 7.22–7.28 (m, 2H, ArH), 6.95 (d, J = 7.8 Hz, 2H, ArH), 6.62 (d, J = 7.8 Hz, 2H, ArH), 4.51 (d, J = 15.0 Hz, 1H, ArCH₂), 4.36 (d, J = 15.0 Hz, 1H, ArCH₂), 3.88–3.92 (m, 1H, CH), 3.82 (br, 1H, OH), 3.59–3.64 (m, 4H, CH₂), 3.27–3.31 (m, 1H, CH), 3.13–3.17 (m, 1H, CH₂), 2.76 (t, J = 8.8 Hz, 1H, CH₂), 1.22 (s, 3H, CH₃), 1.83–1.93 (m, 2H, NCH₂); ¹³C NMR (100 MHz, DMSO- d_{δ}): $\delta = 186.9$, 169.9, 157.6, 142.0, 140.5, 136.8, 136.7, 133.1, 132.6, 131.4, 129.2, 128.6, 128.0, 127.3, 125.6, 83.8, 83.3, 46.5, 46.3, 44.5, 39.3, 38.5, 36.6, 21.2, 20.8; HRMS (ESI-TOF): m/z calcd for C₃₁H₃₀Cl₂N₃O₃ [(M+H)⁺], 562.1659; found, 561.1663.

2-Benzyl-4-(2,4-dichlorophenyl)-10a-hydroxy-5-(4-methoxybenzoyl)-2,3,3a,4,6,7,8,9octahydropyrrolo[3',4':5,6]pyrido[1,2-*a*]pyrimidin-1(10a*H*)-one (5e)

White solid; Mp 179–182 °C; IR (KBr): 3408, 1700, 1596, 1544, 1244, 1041, 702 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ =12.75 (br, 1H, NH), 7.43 (s, 1H, ArH), 7.35–7.40 (m, 2H, ArH), 7.31–7.34 (m, 1H, ArH), 7.29–7.33 (m, 1H, ArH), 7.21–7.25 (m, 2H, ArH), 6.67–6.73 (m, 4H, ArH), 6.62 (br, 1H, OH), 4.49 (d, *J* = 14.9 Hz, 1H, ArCH₂), 4.34 (d, *J* = 14.9 Hz, 1H, ArCH₂), 3.92–3.95 (m, 1H, CH), 3.64 (s, 3H, OCH₃), 3.42–3.49 (m, 2H, CH₂), 3.26–3.30 (m, 1H, CH), 3.10–3.19 (m, 1H, CH₂), 2.76 (t, *J* = 8.8 Hz, 1H, CH₂), 1.80–1.90 (m, 2H, NCH₂), 1.83–1.93 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6): δ = 186.2, 169.6, 158.5, 157.4, 141.7, 136.4, 135.5, 132.8, 132.3, 131.1; 128.9, 128.2, 127.7, 127.0, 126.9, 113.1, 83.5, 82.9, 55.1, 46.2, 46.0, 44.2, 40.2, 38.2, 36.4, 20.5; HRMS (ESI-TOF): *m*/*z* calcd for C₃₁H₃₀Cl₂N₃O₄ [(M+H)⁺], 578.1608; found, 578.1615.

X-ray Structure and Data⁷ of 5a

Figure S1 X-Ray crystal structure of 5a

-			
Empirical formula	C ₃₀ H ₂₆ Cl ₂ FN ₃ O ₃		
Formula weight	566.44		
Temperature	298(2) K		
Wavelength	0.71073 Å		
Crystal system, space group	Monoclinic, P2(1)/c		
Unit cell dimensions	a = 17.159(3) A alpha = 90.00 deg.		
	b = 8.7584(13) A beta = 109.581(2) deg.		
	c = 20.018(3) A gamma = 90.00 deg.		
Volume	2834.3(7) A^3		
Z, Calculated density	4, 1.327 Mg/m^3		
Absorption coefficient	0.272 mm^-1		
F(000)	1176		
Crystal size	0.30 x 0.20 x 0.15 mm		
Theta range for data collection	2.16 to 25.15 deg.		
Limiting indices	-20<=h<=19, -7<=k<=10, -23<=l<=23		
Reflection collected/unique	15524 / 5056 [R(int) = 0.0680]		
Completeness to theta $= 28.40$	99.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9604 and 0.9229		
Refinement method	SHELXL		
Data/restraints/parameters	5056 / 0 / 353		
Goodness-of-fit on F^2	1.000		
Final R indices [I>2sigma(I)]	R1 = 0.0596, $wR2 = 0.1492$		
R indices (all data)	R1 = 0.1310, wR2 = 0.1929		
Largest diff. peak and hole	0.352 and -0.317 e.A^-3		

Table S1 Crystal data and structure refinement for 5a

_		
Cl(1)-C(11)	1.761(4)	
Cl(2)-C(13)	1.742(4)	
F(1)-C(1)	1.576(6)	
N(1)-C(18)	1.350(5)	
N(1)-C(17)	1.443(5)	
N(1)-C(20)	1.469(4)	
N(2)-C(27)	1.368(4)	
N(2)-C(28)	1.472(4)	
N(2)-C(19)	1.477(4)	
N(3)-C(27)	1.328(4)	
N(3)-C(30)	1.476(4)	
N(3)-H(3)	0.8600	
O(1)-C(7)	1.281(4)	
O(2)-C(18)	1.229(4)	
O(3)-C(19)	1.403(4)	
O(3)-H(3A)	0.8200	
C(1)-C(6)	1.362(7)	
C(1)-C(2)	1.364(6)	
C(2)-C(3)	1.389(6)	
C(2)-H(2)	0.9300	
C(3)-C(4)	1.393(5)	
C(3)-H(3B)	0.9300	
C(4)-C(5)	1.387(5)	
C(4)-C(7)	1.516(5)	
C(5)-C(6)	1.392(6)	
C(5)-H(5)	0.9300	
C(6)-H(6)	0.9300	
C(7)-C(8)	1.404(5)	
C(8)-C(27)	1.431(4)	
C(8)-C(9)	1.518(4)	
C(9)-C(10)	1.526(4)	
C(9)-C(16)	1.559(5)	
C(9)-H(9)	0.9800	
C(10)-C(11)	1.397(4)	
C(10)-C(15)	1.398(5)	
C(11)-C(12)	1.383(5)	
C(12)-C(13)	1.383(5)	
C(12)-H(12)	0.9300	
C(13)-C(14)	1.387(5)	
C(14)-C(15)	1.387(4)	
C(14)-H(14)	0.9300	
C(15)-H(15)	0.9300	
C(16)-C(19)	1.523(5)	
C(16)-C(17)	1.541(5)	
C(16)-H(16)	0.9800	
C(17)-H(17A)	0.9700	
C(17)-H(17B)	0.9700	
C(18)-C(19)	1.563(5)	

Table S2 Bond lengths [A] and angles [deg] for 5a

_

-

C(20)-C(21)	1.510(6)
C(20)-H(20A)	0.9700
C(20)-H(20B)	0.9700
C(21)-C(22)	1.377(6)
C(21)-C(26)	1.378(6)
C(22)-C(23)	1.411(8)
C(22)-H(22)	0.9300
C(23)-C(24)	1.336(9)
C(23)-H(23)	0.9300
C(24)-C(25)	1.365(7)
C(24)-H(24)	0.9300
C(25)-C(26)	1.392(6)
C(25)-H(25)	0.9300
C(26)-H(26)	0.9300
C(28)-C(29)	1.439(6)
C(28)-H(28A)	0.9700
C(28)-H(28B)	0.9700
C(29)-C(30)	1.525(6)
C(29)-H(29A)	0.9700
C(29)-H(29B)	0.9700
C(30)-H(30A)	0.9700
C(30)-H(30B)	0.9700
C(18)-N(1)-C(17)	114.5(3)
C(18)-N(1)-C(20)	123.0(4)
C(17)-N(1)-C(20)	122.5(4)
C(27)-N(2)-C(28)	118.2(3)
C(27)-N(2)-C(19)	125.4(3)
C(28)-N(2)-C(19)	116.3(3)
C(27)-N(3)-C(30)	126.7(3)
C(27)-N(3)-H(3)	116.6
C(30)-N(3)-H(3)	116.6
C(19)-O(3)-H(3A)	109.5
C(6)-C(1)-C(2)	117.2(4)
C(6)-C(1)-F(1)	120.8(5)
C(2)-C(1)-F(1)	122.0(5)
C(1)-C(2)-C(3)	122.0(4)
C(1)-C(2)-H(2)	119.0
C(3)-C(2)-H(2)	119.0
C(2)-C(3)-C(4)	120.9(4)
C(2)-C(3)-H(3B)	119.6
C(4)-C(3)-H(3B)	119.6
C(5)-C(4)-C(3)	116.9(4)
C(5)-C(4)-C(7)	123.7(3)
C(3)-C(4)-C(7)	119.2(3)
C(4)-C(5)-C(6)	120.5(4)
C(4)-C(5)-H(5)	119.8
C(6)-C(5)-H(5)	119.8
C(1)-C(6)-C(5)	122.4(4)
C(1)-C(6)-H(6)	118.8

$\begin{array}{ccccc} C(5)-C(6)-H(6) & 118.8 \\ O(1)-C(7)-C(8) & 124.7(3) \\ O(1)-C(7)-C(4) & 116.2(3) \\ C(8)-C(7)-C(4) & 119.1(3) \\ C(7)-C(8)-C(27) & 121.4(3) \\ C(7)-C(8)-C(9) & 121.2(3) \\ C(27)-C(8)-C(9) & 117.3(3) \\ C(8)-C(9)-C(10) & 113.6(3) \\ C(8)-C(9)-C(16) & 110.1(3) \\ C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccc} C(8)-C(7)-C(4) & 119.1(3) \\ C(7)-C(8)-C(27) & 121.4(3) \\ C(7)-C(8)-C(9) & 121.2(3) \\ C(27)-C(8)-C(9) & 117.3(3) \\ C(8)-C(9)-C(10) & 113.6(3) \\ C(8)-C(9)-C(16) & 110.1(3) \\ C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{ccccc} C(7)-C(8)-C(27) & 121.4(3) \\ C(7)-C(8)-C(9) & 121.2(3) \\ C(27)-C(8)-C(9) & 117.3(3) \\ C(8)-C(9)-C(10) & 113.6(3) \\ C(8)-C(9)-C(16) & 110.1(3) \\ C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{cccc} C(7)-C(8)-C(9) & 121.2(3) \\ C(27)-C(8)-C(9) & 117.3(3) \\ C(8)-C(9)-C(10) & 113.6(3) \\ C(8)-C(9)-C(16) & 110.1(3) \\ C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{cccc} C(27)-C(8)-C(9) & 117.3(3) \\ C(8)-C(9)-C(10) & 113.6(3) \\ C(8)-C(9)-C(16) & 110.1(3) \\ C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{cccc} C(8)-C(9)-C(10) & 113.6(3) \\ C(8)-C(9)-C(16) & 110.1(3) \\ C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{cccc} C(8)-C(9)-C(16) & 110.1(3) \\ C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{ccc} C(10)-C(9)-C(16) & 111.6(3) \\ C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(16)-C(9) +H(0) & 107.0 \\ \end{array}$
$\begin{array}{c} C(8)-C(9)-H(9) & 107.0 \\ C(10)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ \end{array}$
$\begin{array}{c} C(10)-C(9)-H(9) & 107.0 \\ C(16)-C(9)-H(9) & 107.0 \\ \end{array}$
$U(10)-U(9)-\Pi(9)$ 107.0
C(11)-C(10)-C(15) 115.7(3)
C(11)-C(10)-C(9) 121.5(3)
C(15)-C(10)-C(9) 122.7(3)
C(12)-C(11)-C(10) 122.9(3)
C(12)-C(11)-Cl(1) 117.2(3)
C(10)-C(11)-Cl(1) 119.9(3)
C(13)-C(12)-C(11) 119.2(3)
C(13)-C(12)-H(12) 120.4
C(11)-C(12)-H(12) 120.4
C(12)-C(13)-C(14) 120.4(4)
C(12)-C(13)-Cl(2) 119.4(3)
C(14)-C(13)-Cl(2) 120.2(3)
C(15)-C(14)-C(13) 118.9(4)
C(15)-C(14)-H(14) 120.6
C(13)-C(14)-H(14) 120.6
C(14)-C(15)-C(10) 122.9(3)
C(14)-C(15)-H(15) 118.5
C(10)-C(15)-H(15) 118.5
C(19)-C(16)-C(17) 105.5(3)
C(19)-C(16)-C(9) 115.4(3)
C(17)-C(16)-C(9) 111.7(3)
C(19)-C(16)-H(16) 108.0
C(17)-C(16)-H(16) 108.0
C(9)-C(16)-H(16) 108.0
N(1)-C(17)-C(16) 104.5(3)
N(1)-C(17)-H(17A) 110.9
C(16)-C(17)-H(17A) 110.9
N(1)-C(17)-H(17B) 110.9
C(16)-C(17)-H(17B) 110.9
H(17A)-C(17)-H(17B) 108.9
O(2)-C(18)-N(1) 126.9(4)
O(2)-C(18)-C(19) 125.1(4)
N(1)-C(18)-C(19) 108.0(3)
O(3)-C(19)-N(2) 107.4(3)
O(3)-C(19)-C(16) 112.8(3)
N(2)-C(19)-C(16) 112.6(3)
N(2)-C(19)-C(16) 112.6(3)

_

O(3)-C(19)-C(18)113.2(3) $N(2)$ -C(19)-C(18)107.9(3) $C(16)$ -C(19)-C(18)102.9(3) $N(1)$ -C(20)-C(21)112.3(3) $N(1)$ -C(20)-H(20A)109.1 $C(21)$ -C(20)-H(20B)109.1 $C(21)$ -C(20)-H(20B)109.1 $C(21)$ -C(20)-H(20B)107.9 $C(22)$ -C(21)-C(26)117.7(5) $C(22)$ -C(21)-C(26)117.7(5) $C(22)$ -C(21)-C(20)122.8(5) $C(22)$ -C(22)-C(23)120.2(6) $C(21)$ -C(22)-H(22)119.9 $C(23)$ -C(22)-H(22)119.9 $C(24)$ -C(23)-H(23)119.6 $C(23)$ -C(24)-H(24)119.9 $C(23)$ -C(24)-H(24)119.9 $C(24)$ -C(23)-H(23)119.6 $C(23)$ -C(24)-H(24)119.9 $C(24)$ -C(25)-H(25)120.3(6) $C(24)$ -C(25)-H(25)120.2 $C(26)$ -C(25)-H(25)120.2 $C(26)$ -C(25)-H(25)120.2 $C(26)$ -C(25)-H(25)120.2 $C(26)$ -C(25)-H(25)120.2 $C(21)$ -C(26)-H(26)119.3 $N(3)$ -C(27)-N(2)118.5(3) $N(3)$ -C(27)-N(2)118.5(3) $N(3)$ -C(27)-N(2)118.5(3) $N(3)$ -C(27)-N(2)111.1(4) $C(29)$ -C(28)-H(28A)109.4 $N(2)$ -C(28)-H(28A)109.4 $N(2)$ -C(28)-H(28A)109.4 $N(2)$ -C(28)-H(28B)108.0 $C(28)$ -C(28)-H(28B)108.0 $C(29)$ -C(28)-H(29B)109.4 $C(29)$ -C(28)-H(29B)109.4 $C(28)$ -C(29)-H(29B)108.4 $N(3)$ -C(30)-H(30A)109.9 $N(3$		
N(2)-C(19)-C(18) $107.9(3)$ C(16)-C(19)-C(18) $102.9(3)$ N(1)-C(20)-H(20A) 109.1 C(21)-C(20)-H(20B) 109.1 C(21)-C(20)-H(20B) 109.1 N(1)-C(20)-H(20B) 109.1 H(20A)-C(20)-H(20B) 107.9 C(22)-C(21)-C(20) $122.8(5)$ C(22)-C(21)-C(20) $122.8(5)$ C(22)-C(21)-C(20) $122.8(5)$ C(22)-C(21)-C(20) $122.8(5)$ C(22)-C(21)-C(20) $129.9(6)$ C(21)-C(22)-H(22) 119.9 C(23)-C(22)-H(22) 119.9 C(24)-C(23)-H(23) 119.6 C(23)-C(22)-H(23) 119.6 C(23)-C(24)-H(23) 119.6 C(23)-C(24)-H(24) 119.9 C(24)-C(25)-H(25) $120.3(6)$ C(24)-C(25)-H(25) 120.2 C(24)-C(25)-H(25) 120.2 C(24)-C(25)-H(25) 120.2 C(24)-C(25)-H(25) 120.2 C(24)-C(25)-H(25) 120.2 C(24)-C(25)-H(25) 120.2 C(24)-C(25)-H(26) 119.3 N(3)-C(27)-C(8) $120.6(3)$ N(3)-C(27)-N(2) $118.5(3)$ N(3)-C(27)-C(8) $120.6(3)$ N(2)-C(28)-H(28A) 109.4 N(2)-C(28)-H(28A) 109.4 N(2)-C(28)-H(28A) 109.4 N(2)-C(28)-H(28B) 108.0 N(3)-C(29)-H(29B) 109.4 C(29)-C(28)-H(28B) 109.4 N(2)-C(28)-H(28B) 109.4 N(3)-C(29)-H(29B) 109.4 C(28)-C(29)-H(29B) 109.4 C(28)-C(29)-H(29B) 109.4 C(28)-C	O(3)-C(19)-C(18)	113.2(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)-C(19)-C(18)	107.9(3)
N(1)-C(20)-C(21)112.3(3)N(1)-C(20)-H(20A)109.1C(21)-C(20)-H(20B)109.1C(21)-C(20)-H(20B)107.9C(22)-C(21)-C(26)117.7(5)C(22)-C(21)-C(20)122.8(5)C(22)-C(21)-C(20)119.5(4)C(21)-C(22)-H(22)119.9C(22)-C(21)-C(22)119.9C(23)-C(22)-H(22)119.9C(24)-C(23)-H(23)119.6C(22)-C(23)-H(23)119.6C(23)-C(24)-H(23)119.6C(23)-C(24)-H(23)119.6C(23)-C(24)-H(24)119.9C(24)-C(23)-H(23)119.6C(23)-C(24)-H(24)119.9C(24)-C(25)-H(25)120.3(6)C(23)-C(24)-H(24)119.9C(24)-C(25)-H(25)120.2C(26)-C(25)-H(25)120.2C(26)-C(25)-H(25)120.2C(26)-C(25)-H(25)120.5(5)C(21)-C(26)-H(26)119.3N(3)-C(27)-C(8)120.6(3)N(2)-C(27)-C(8)120.9(3)C(25)-C(26)-H(26)119.3N(3)-C(27)-C(8)120.9(3)C(29)-C(28)-H(28A)109.4N(2)-C(28)-H(28A)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4	C(16)-C(19)-C(18)	102.9(3)
N(1)-C(20)-H(20A)109.1C(21)-C(20)-H(20B)109.1N(1)-C(20)-H(20B)109.1H(20A)-C(20)-H(20B)107.9C(22)-C(21)-C(20)122.8(5)C(22)-C(21)-C(20)122.8(5)C(22)-C(21)-C(20)120.2(6)C(21)-C(22)-H(22)119.9C(22)-C(21)-H(22)119.9C(23)-C(22)-H(22)120.7(6)C(24)-C(23)-H(23)119.6C(22)-C(23)-H(23)119.6C(22)-C(23)-H(23)119.6C(22)-C(23)-H(24)119.9C(23)-C(24)-H(24)119.9C(24)-C(25)-H(25)120.3(6)C(23)-C(24)-H(24)119.9C(24)-C(25)-H(25)120.2C(24)-C(25)-H(25)120.2C(24)-C(25)-H(25)120.2C(24)-C(25)-H(25)120.2C(24)-C(25)-H(25)120.2C(21)-C(26)-H(26)119.3N(3)-C(27)-C(8)120.6(3)N(3)-C(27)-C(8)120.9(3)N(3)-C(27)-C(8)120.9(3)N(3)-C(27)-C(8)120.9(3)N(3)-C(27)-C(8)120.9(3)N(3)-C(27)-C(8)109.4N(2)-C(28)-H(28H)109.4N(2)-C(28)-H(28H)109.4N(2)-C(28)-H(28H)109.4N(2)-C(28)-H(28H)109.4N(2)-C(28)-H(28H)109.4C(29)-C(28)-H(28H)109.4C(28)-C(29)-H(29H)108.0C(28)-C(29)-H(29H)108.0C(28)-C(29)-H(29H)108.1N(3)-C(30)-H(30A)109.9N(3)-C(30)-H(20H)109.4C(28)-C(29)-H(29H)108.8(3) <td>N(1)-C(20)-C(21)</td> <td>112.3(3)</td>	N(1)-C(20)-C(21)	112.3(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-C(20)-H(20A)	109.1
N(1)-C(20)-H(20B)109.1C(21)-C(20)-H(20B)107.9C(22)-C(21)-C(26)117.7(5)C(22)-C(21)-C(20)122.8(5)C(22)-C(21)-C(20)119.5(4)C(21)-C(22)-H(22)119.9C(21)-C(22)-H(22)119.9C(24)-C(23)-H(23)119.6C(22)-C(23)-H(23)119.6C(23)-C(24)-H(23)119.6C(23)-C(24)-H(23)119.6C(23)-C(24)-H(23)119.6C(23)-C(24)-H(24)119.9C(24)-C(25)-H(25)120.3(6)C(23)-C(24)-H(24)119.9C(24)-C(25)-H(25)120.2C(24)-C(25)-H(25)120.2C(25)-C(24)-H(26)119.3C(25)-C(26)-H(26)119.3C(25)-C(26)-H(26)119.3C(25)-C(26)-H(26)119.3N(3)-C(27)-N(2)118.5(3)N(3)-C(27)-C(8)120.6(3)N(3)-C(27)-C(8)120.9(3)C(29)-C(28)-H(28A)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4N(2)-C(28)-H(28B)109.4C(29)-C(28)-H(29A)109.4C(28)-C(29)-H(29A)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4C(28)-C(29)-H(29B)109.4<	C(21)-C(20)-H(20A)	109.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-C(20)-H(20B)	109.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)-C(20)-H(20B)	109.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(20A)-C(20)-H(20B)	107.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(22)-C(21)-C(26)	117.7(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(22)-C(21)-C(20)	122.8(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)-C(21)-C(20)	119.5(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)-C(22)-C(23)	120.2(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)-C(22)-H(22)	119.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)-C(22)-H(22)	119.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)-C(23)-C(22)	120.7(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)-C(23)-H(23)	119.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(22)-C(23)-H(23)	119.6
$\begin{array}{cccccc} C(23)-C(24)-H(24) & 119.9 \\ C(25)-C(24)-H(24) & 119.9 \\ C(24)-C(25)-C(26) & 119.6(6) \\ C(24)-C(25)-H(25) & 120.2 \\ C(26)-C(25)-H(25) & 120.2 \\ C(21)-C(26)-C(25) & 121.5(5) \\ C(21)-C(26)-H(26) & 119.3 \\ N(3)-C(27)-N(2) & 118.5(3) \\ N(3)-C(27)-C(8) & 120.9(3) \\ C(29)-C(28)-H(28) & 109.4 \\ N(2)-C(28)-H(28A) & 109.4 \\ N(2)-C(28)-H(28A) & 109.4 \\ N(2)-C(28)-H(28B) & 109.4 \\ N(2)-C(28)-H(28B) & 109.4 \\ N(2)-C(28)-H(28B) & 109.4 \\ H(28A)-C(28)-H(28B) & 109.4 \\ H(28A)-C(29)-H(29A) & 109.4 \\ C(29)-C(29)-H(29B) & 109.4 \\ C(29)-C(29)-H(29A) & 109.4 \\ C(28)-C(29)-H(29A) & 109.4 \\ C(28)-C(29)-H(29A) & 109.4 \\ C(30)-C(29)-H(29B) & 109.4 \\ H(29A)-C(29)-H(29B) & 109.4 \\ H(29A)-C(29)-H(30A) & 109.9 \\ C(29)-C(30)-H(30A) & 109.9 \\ C(29)-C(30)-H(30B) & 108.3 \\ C(30)-C(30)-H(30B) & 108.3 \\ C(30)-C(30)-H(30B) & 108.3 \\ C(30)-C(30)-H(30B) $	C(23)-C(24)-C(25)	120.3(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)-C(24)-H(24)	119.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(25)-C(24)-H(24)	119.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)-C(25)-C(26)	119.6(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)-C(25)-H(25)	120.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)-C(25)-H(25)	120.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)-C(26)-C(25)	121.5(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)-C(26)-H(26)	119.3
N(3)-C(27)-N(2)118.5(3) $N(3)-C(27)-C(8)$ 120.6(3) $N(2)-C(27)-C(8)$ 120.9(3) $C(29)-C(28)-N(2)$ 111.1(4) $C(29)-C(28)-H(28A)$ 109.4 $N(2)-C(28)-H(28A)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $N(2)-C(28)-H(28B)$ 108.0 $C(28)-C(29)-C(30)$ 111.0(4) $C(28)-C(29)-H(29A)$ 109.4 $C(30)-C(29)-H(29A)$ 109.4 $C(30)-C(29)-H(29B)$ 109.4 $C(30)-C(29)-H(29B)$ 109.4 $H(29A)-C(29)-H(29B)$ 108.0 $N(3)-C(30)-H(30A)$ 109.9 $C(29)-C(30)-H(30A)$ 109.9 $N(3)-C(30)-H(30B)$ 109.9 $N(3)-C(30)-H(30B)$ 109.9 $H(30A)-C(30)-H(30B)$ 108.3	C(25)-C(26)-H(26)	119.3
N(3)-C(27)-C(8) $120.6(3)$ $N(2)-C(27)-C(8)$ $120.9(3)$ $C(29)-C(28)-N(2)$ $111.1(4)$ $C(29)-C(28)-H(28A)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $H(28A)-C(28)-H(28B)$ 108.0 $C(28)-C(29)-C(30)$ $111.0(4)$ $C(28)-C(29)-H(29A)$ 109.4 $C(30)-C(29)-H(29A)$ 109.4 $C(30)-C(29)-H(29B)$ 109.4 $C(30)-C(29)-H(29B)$ 109.4 $H(29A)-C(29)-H(29B)$ 108.0 $N(3)-C(30)-H(30A)$ 109.9 $C(29)-C(30)-H(30A)$ 109.9 $N(3)-C(30)-H(30B)$ 109.9 $H(30A)-C(30)-H(30B)$ 108.3	N(3)-C(27)-N(2)	118.5(3)
N(2)-C(27)-C(8) $120.9(3)$ $C(29)-C(28)-N(2)$ $111.1(4)$ $C(29)-C(28)-H(28A)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $N(2)-C(28)-H(28B)$ 109.4 $H(28A)-C(28)-H(28B)$ 108.0 $C(28)-C(29)-C(30)$ $111.0(4)$ $C(28)-C(29)-H(29A)$ 109.4 $C(30)-C(29)-H(29A)$ 109.4 $C(30)-C(29)-H(29B)$ 109.4 $C(30)-C(29)-H(29B)$ 109.4 $H(29A)-C(29)-H(29B)$ 108.0 $N(3)-C(30)-H(29B)$ $108.8(3)$ $N(3)-C(30)-H(30A)$ 109.9 $C(29)-C(30)-H(30B)$ 109.9 $N(3)-C(30)-H(30B)$ 109.9 $H(30A)-C(30)-H(30B)$ 109.9	N(3)-C(27)-C(8)	120.6(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)-C(27)-C(8)	120.9(3)
$\begin{array}{ccccc} C(29)-C(28)-H(28A) & 109.4 \\ N(2)-C(28)-H(28A) & 109.4 \\ C(29)-C(28)-H(28B) & 109.4 \\ N(2)-C(28)-H(28B) & 108.0 \\ C(28)-C(29)-C(30) & 111.0(4) \\ C(28)-C(29)-H(29A) & 109.4 \\ C(30)-C(29)-H(29A) & 109.4 \\ C(30)-C(29)-H(29B) & 109.4 \\ C(30)-C(29)-H(29B) & 109.4 \\ H(29A)-C(29)-H(29B) & 108.0 \\ N(3)-C(30)-C(29) & 108.8(3) \\ N(3)-C(30)-H(30A) & 109.9 \\ C(29)-C(30)-H(30B) & 109.9 \\ C(29)-C(30)-H(30B) & 109.9 \\ H(30A)-C(30)-H(30B) & 108.3 \\ \end{array}$	C(29)-C(28)-N(2)	111.1(4)
N(2)-C(28)-H(28A)109.4 $C(29)$ -C(28)-H(28B)109.4 $N(2)$ -C(28)-H(28B)109.4 $H(28A)$ -C(28)-H(28B)108.0 $C(28)$ -C(29)-C(30)111.0(4) $C(28)$ -C(29)-H(29A)109.4 $C(30)$ -C(29)-H(29A)109.4 $C(30)$ -C(29)-H(29B)109.4 $C(30)$ -C(29)-H(29B)109.4 $H(29A)$ -C(29)-H(29B)108.0 $N(3)$ -C(30)-C(29)108.8(3) $N(3)$ -C(30)-H(30A)109.9 $C(29)$ -C(30)-H(30B)109.9 $N(3)$ -C(30)-H(30B)109.9 $H(30A)$ -C(30)-H(30B)109.9 $H(30A)$ -C(30)-H(30B)108.3	C(29)-C(28)-H(28A)	109.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)-C(28)-H(28A)	109.4
N(2)-C(28)-H(28B) 109.4 H(28A)-C(28)-H(28B) 108.0 C(28)-C(29)-C(30) $111.0(4)$ C(28)-C(29)-H(29A) 109.4 C(30)-C(29)-H(29B) 109.4 C(30)-C(29)-H(29B) 109.4 H(29A)-C(29)-H(29B) 108.0 N(3)-C(30)-C(29) $108.8(3)$ N(3)-C(30)-H(30A) 109.9 C(29)-C(30)-H(30B) 109.9 C(29)-C(30)-H(30B) 109.9 H(30A)-C(30)-H(30B) 109.9	C(29)-C(28)-H(28B)	109.4
H(28A)-C(28)-H(28B)108.0 $C(28)-C(29)-C(30)$ 111.0(4) $C(28)-C(29)-H(29A)$ 109.4 $C(30)-C(29)-H(29B)$ 109.4 $C(28)-C(29)-H(29B)$ 109.4 $H(29A)-C(29)-H(29B)$ 108.0 $N(3)-C(30)-C(29)$ 108.8(3) $N(3)-C(30)-H(30A)$ 109.9 $C(29)-C(30)-H(30B)$ 109.9 $C(29)-C(30)-H(30B)$ 109.9 $H(30A)-C(30)-H(30B)$ 109.9 $H(30A)-C(30)-H(30B)$ 108.3	N(2)-C(28)-H(28B)	109.4
$\begin{array}{ccccc} C(28)-C(29)-C(30) & 111.0(4) \\ C(28)-C(29)-H(29A) & 109.4 \\ C(30)-C(29)-H(29A) & 109.4 \\ C(28)-C(29)-H(29B) & 109.4 \\ H(29A)-C(29)-H(29B) & 108.0 \\ N(3)-C(30)-C(29) & 108.8(3) \\ N(3)-C(30)-H(30A) & 109.9 \\ C(29)-C(30)-H(30A) & 109.9 \\ N(3)-C(30)-H(30B) & 109.9 \\ C(29)-C(30)-H(30B) & 109.9 \\ H(30A)-C(30)-H(30B) & 109.9 \\ H(30A)-C(30)-H(30B) & 108.3 \\ \end{array}$	H(28A)-C(28)-H(28B)	108.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(28)-C(29)-C(30)	111.0(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(28)-C(29)-H(29A)	109.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(30)-C(29)-H(29A)	109.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(28)-C(29)-H(29B)	109.4
H(29A)-C(29)-H(29B)108.0N(3)-C(30)-C(29)108.8(3)N(3)-C(30)-H(30A)109.9C(29)-C(30)-H(30A)109.9N(3)-C(30)-H(30B)109.9C(29)-C(30)-H(30B)109.9H(30A)-C(30)-H(30B)108.3	C(30)-C(29)-H(29B)	109.4
N(3)-C(30)-C(29) 108.8(3) N(3)-C(30)-H(30A) 109.9 C(29)-C(30)-H(30A) 109.9 N(3)-C(30)-H(30B) 109.9 C(29)-C(30)-H(30B) 109.9 H(30A)-C(30)-H(30B) 108.3	H(29A)-C(29)-H(29B)	108.0
N(3)-C(30)-H(30A) 109.9 C(29)-C(30)-H(30A) 109.9 N(3)-C(30)-H(30B) 109.9 C(29)-C(30)-H(30B) 109.9 H(30A)-C(30)-H(30B) 108.3	N(3)-C(30)-C(29)	108.8(3)
C(29)-C(30)-H(30A) 109.9 N(3)-C(30)-H(30B) 109.9 C(29)-C(30)-H(30B) 109.9 H(30A)-C(30)-H(30B) 108.3	N(3)-C(30)-H(30A)	109.9
N(3)-C(30)-H(30B) 109.9 C(29)-C(30)-H(30B) 109.9 H(30A)-C(30)-H(30B) 108.3	C(29)-C(30)-H(30A)	109.9
C(29)-C(30)-H(30B) 109.9 H(30A)-C(30)-H(30B) 108.3	N(3)-C(30)-H(30B)	109.9
H(30A)-C(30)-H(30B) 108.3	C(29)-C(30)-H(30B)	109.9
	H(30A)-C(30)-H(30B)	108.3

Symmetry transformations used to generate equivalent atoms:

C(6)-C(1)-C(2)-C(3)	-0.1(8)
F(1)-C(1)-C(2)-C(3)	-177.7(5)
C(1)-C(2)-C(3)-C(4)	1.9(7)
C(2)-C(3)-C(4)-C(5)	-2.9(6)
C(2)-C(3)-C(4)-C(7)	-178.7(4)
C(3)-C(4)-C(5)-C(6)	2.1(6)
C(7)-C(4)-C(5)-C(6)	177.8(4)
C(2)-C(1)-C(6)-C(5)	-0.7(8)
F(1)-C(1)-C(6)-C(5)	177.0(5)
C(4)-C(5)-C(6)-C(1)	-0.3(8)
C(5)-C(4)-C(7)-O(1)	-110.9(4)
C(3)-C(4)-C(7)-O(1)	64.7(4)
C(5)-C(4)-C(7)-C(8)	71.2(5)
C(3)-C(4)-C(7)-C(8)	-113.2(4)
O(1)-C(7)-C(8)-C(27)	-3.6(5)
C(4)-C(7)-C(8)-C(27)	174.1(3)
O(1)-C(7)-C(8)-C(9)	174.2(3)
C(4)-C(7)-C(8)-C(9)	-8.2(4)
C(7)-C(8)-C(9)-C(10)	-91.4(4)
C(27)-C(8)-C(9)-C(10)	86.4(3)
C(7)-C(8)-C(9)-C(16)	142.5(3)
C(27)-C(8)-C(9)-C(16)	-39.7(4)
C(8)-C(9)-C(10)-C(11)	152.2(3)
C(16)-C(9)-C(10)-C(11)	-82.5(4)
C(8)-C(9)-C(10)-C(15)	-23.4(4)
C(16)-C(9)-C(10)-C(15)	101.9(4)
C(15)-C(10)-C(11)-C(12)	-0.1(5)
C(9)-C(10)-C(11)-C(12)	-176.0(3)
C(15)-C(10)-C(11)-Cl(1)	179.1(3)
C(9)-C(10)-C(11)-Cl(1)	3.2(5)
C(10)-C(11)-C(12)-C(13)	0.2(6)
Cl(1)-C(11)-C(12)-C(13)	-179.0(3)
C(11)-C(12)-C(13)-C(14)	-0.3(6)
C(11)-C(12)-C(13)-Cl(2)	-178.4(3)
C(12)-C(13)-C(14)-C(15)	0.3(6)
Cl(2)-C(13)-C(14)-C(15)	178.4(3)
C(13)-C(14)-C(15)-C(10)	-0.2(6)
C(11)-C(10)-C(15)-C(14)	0.1(5)
C(9)-C(10)-C(15)-C(14)	175.9(3)
C(8)-C(9)-C(16)-C(19)	49.1(4)

Table S3Torsion angles [deg] for 5a

$C(10)_{-}C(9)_{-}C(16)_{-}C(19)$	-78 1(3)
C(8)-C(9)-C(16)-C(17)	-71 4(4)
C(10)-C(9)-C(16)-C(17)	161.5(3)
C(18) - N(1) - C(17) - C(16)	-10.4(4)
C(20)-N(1)-C(17)-C(16)	169.9(3)
C(19)-C(16)-C(17)-N(1)	19.7(4)
C(9)-C(16)-C(17)-N(1)	145.8(3)
C(17)-N(1)-C(18)-O(2)	178.4(4)
C(20)-N(1)-C(18)-O(2)	-1.9(6)
C(17)-N(1)-C(18)-C(19)	-3.3(4)
C(20)-N(1)-C(18)-C(19)	176.4(3)
C(27)-N(2)-C(19)-O(3)	-127.4(3)
C(28)-N(2)-C(19)-O(3)	55.1(4)
C(27)-N(2)-C(19)-C(16)	-2.6(5)
C(28)-N(2)-C(19)-C(16)	179.9(3)
C(27)-N(2)-C(19)-C(18)	110.2(4)
C(28)-N(2)-C(19)-C(18)	-67.2(4)
C(17)-C(16)-C(19)-O(3)	-143.4(3)
C(9)-C(16)-C(19)-O(3)	92.8(4)
C(17)-C(16)-C(19)-N(2)	94.9(3)
C(9)-C(16)-C(19)-N(2)	-28.9(4)
C(17)-C(16)-C(19)-C(18)	-21.0(3)
C(9)-C(16)-C(19)-C(18)	-144.8(3)
O(2)-C(18)-C(19)-O(3)	-44.0(5)
N(1)-C(18)-C(19)-O(3)	137.7(3)
O(2)-C(18)-C(19)-N(2)	74.7(4)
N(1)-C(18)-C(19)-N(2)	-103.7(3)
O(2)-C(18)-C(19)-C(16)	-166.1(4)
N(1)-C(18)-C(19)-C(16)	15.6(4)
C(18)-N(1)-C(20)-C(21)	103.5(5)
C(17)-N(1)-C(20)-C(21)	-76.8(5)
N(1)-C(20)-C(21)-C(22)	95.9(5)
N(1)-C(20)-C(21)-C(26)	-83.2(5)
C(26)-C(21)-C(22)-C(23)	-1.0(7)
C(20)-C(21)-C(22)-C(23)	179.9(5)
C(21)-C(22)-C(23)-C(24)	1.4(10)
C(22)-C(23)-C(24)-C(25)	-0.9(11)
C(23)-C(24)-C(25)-C(26)	0.1(9)
C(22)-C(21)-C(26)-C(25)	0.2(7)
C(20)-C(21)-C(26)-C(25)	179.3(4)
C(24)-C(25)-C(26)-C(21)	0.3(7)

C(30)-N(3)-C(27)-N(2)	7.0(5)
C(30)-N(3)-C(27)-C(8)	-174.4(3)
C(28)-N(2)-C(27)-N(3)	8.8(5)
C(19)-N(2)-C(27)-N(3)	-168.6(3)
C(28)-N(2)-C(27)-C(8)	-169.9(3)
C(19)-N(2)-C(27)-C(8)	12.8(5)
C(7)-C(8)-C(27)-N(3)	9.8(5)
C(9)-C(8)-C(27)-N(3)	-168.0(3)
C(7)-C(8)-C(27)-N(2)	-171.6(3)
C(9)-C(8)-C(27)-N(2)	10.6(4)
C(27)-N(2)-C(28)-C(29)	-42.3(5)
C(19)-N(2)-C(28)-C(29)	135.3(4)
N(2)-C(28)-C(29)-C(30)	58.9(5)
C(27)-N(3)-C(30)-C(29)	10.4(6)
C(28)-C(29)-C(30)-N(3)	-42.8(5)

Figure 1. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 1a
Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Figure 2. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **1a**

Figure 5. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **1c**

Figure 6. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **1**c

Figure 10. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **1e**

Figure 12. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **1f**

Figure 22. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **2d**

Figure 24. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **2e**

Figure 27. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **3a**

Figure 30. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **3b**

Figure 31. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **3c**

Figure 40. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 4c

Figure 41. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **4d**

Figure 43. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **4e**

Figure 47. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **4g**

Figure 50. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **4h**

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Figure 54. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **4j**

Figure 67. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **4q**

Figure 73. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 4t

Figure 75. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **4u**

Figure 77. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 4v

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Figure 81. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **4x**

Figure 83. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 4y

References and Notes

- 1. *a*) Z.-T. Huang, M.-X. Wang, *Synthesis* 1992, **12**, 1273. *b*) Z.-J. Li, D. Charles, *Synth. Commun.* 2001, **31**, 527; *c*) X.-B. Chen,
 - X.-M. Liu, R. Huang, S.-J. Yan, J. Lin, Eur. J. Org. Chem., 2013, 4607.
- 2. G. Rudolf, Chemische Berichte 1967, 100, 591.
- 3. Z.-T. Huang, Z.-R. Liu, Synthesis 1987, 4, 357.
- 4. Z.-T. Huang, Z.-R. Liu, Synth. Commun., 1989, 19, 943.
- 5. Southwick, P. L.; Barnas, E. F. J. Org. Chem., 1962, 27, 98.
- 6. C. A. Snyder, J. Heterocyclic Chem., 1982, 3, 603.
- CCDC 962808 contain the supplementary crystallographic data for compound 5a. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.