Electronic Supplementary Information

A facile hard-templating synthesis of mesoporous spinel CoFe₂O₄ nanostructures as promising electrocatalysts for H_2O_2 reduction reaction

Rui Ding,^{*a,b,c} LeiLei Lv,^a Li Qi,^a Minjun Jia^c and Hongyu Wang^{*a}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China

^b University of Chinese Academy of Sciences, Beijing 100039, China

^c State Key Laboratory of Theoretical and Computational Chemistry, College of

Chemistry, Jilin University, Changchun 130023, China

^{*} Email addresses: drm8122@163.com; dingrui@ciac.ac.cn (R. Ding); hongyuwang@ciac.ac.cn (H. Wang); Tel/Fax: +86 431 85262287;

Fig. S1 Limit (peak) current density as a function of H_2O_2 concentration.

The limit (peak) current density and H_2O_2 concentration comply with the following relationship:

$$j_1 = nFm_0C_0 \tag{1}$$

Fig. S2 CV plots of TAB (a) and $CoFe_2O_4$ (b) electrodes in blank and O_2 saturated 3 M NaOH solutions at a scan rate of 10 mV s⁻¹.

Fig. S3 Bode plots of CoFe₂O₄ electrode in 3 M NaOH solutions.

Fig. S4 Exchange current density as a function of H_2O_2 concentration.

Considering the EIS spectra were tested under open circuit potentials (quasi-equilibrium state), the exchange current density (j^0) can be calculated with the fitted values of charge transfer resistance (R_{ct}) according to following equation:

$$j^{0} = \frac{RT}{nFR_{ct}}$$
(2)

Table S1 The fitted values of impedimetric parameters for the $CoFe_2O_4$

electrode in 3 M NaOH with different H_2O_2 concentrations.

H ₂ O ₂	Impedimetric parameters										
Conc.	L	R _e	Q1, Y ₀	Rct1	$T, Y_0; B$	С	Q_{2}, Y_{0}	Rct2	<i>n</i> 1	n2	χ^2
	(H cm ²)	$(\Omega \text{ cm}^2)$	$(\Omega^{-1} \operatorname{s}^{n} \operatorname{cm}^{-2})$	$(\Omega \text{ cm}^2)$	$(\Omega^{-1} s^{0.5} cm^{-2}; s^{0.5})$	(F cm ⁻²)	$(\Omega^{-1} \operatorname{s}^{n} \operatorname{cm}^{-2})$	$(\Omega \text{ cm}^2)$			(E-3)
Blank	7.1E-8	0.21	5.7E-3	5.64	6.3E-3; 10.65	1.42	_	_	0.74	-	1.2
0.3 M	3.5E-8	0.31	7.3E-3	0.80	_	-	7.6E-3	19.9	0.84	0.74	1.9
0.5 M	3.5E-8	0.38	7.5E-3	0.71	_	-	6.9E-3	11.1	0.83	0.75	4.0
0.7 M	8.6E-8	0.17	6.3E-3	0.74	-	-	8.1E-3	7.41	0.85	0.74	5.3
0.9 M	8.3E-8	0.16	5.1E-3	0.70	-	-	8.1E-3	5.13	0.88	0.72	4.0