Supporting Information

An NMR Study on a Pseudo-Intramolecular Transacylation of α -Aryl- β -keto Ester

Sho Hirai, Haruyasu Asahara, Shotaro Hirao, Jun Sawayama, Ryuichi Sugimoto, Kazuhiko Saigo, and Nagatoshi Nishiwaki*

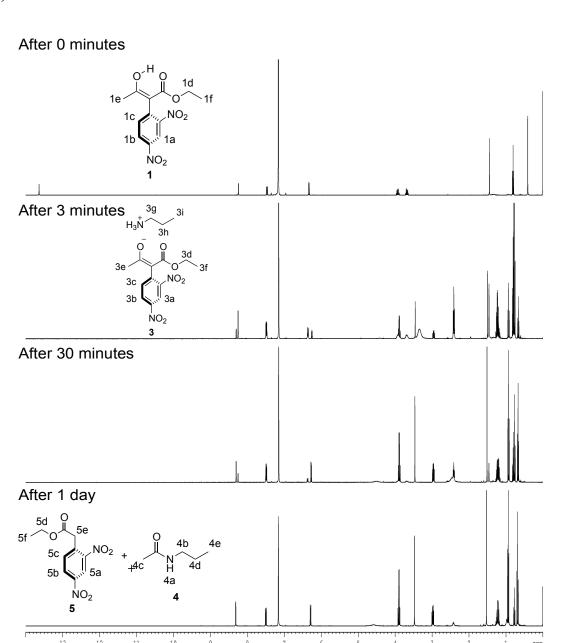
School of Environmental Science and Engineering

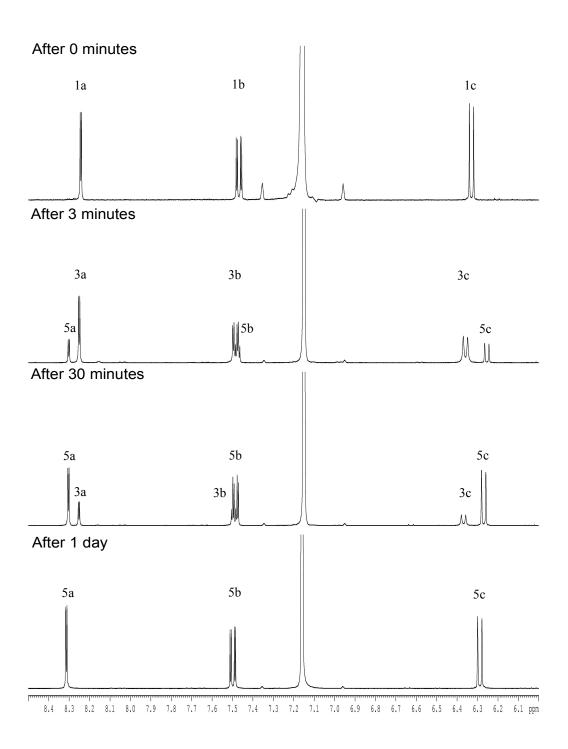
Kochi University of Technology

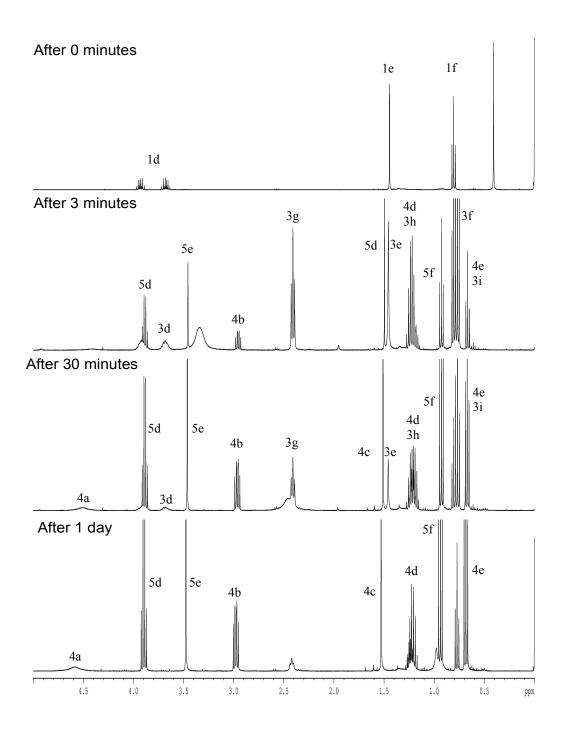
Tosayamada, Kami, Kochi 782-8502, Japan

Fax: (+)81 887 57 2520

E-mail: nishiwaki.nagatoshi@kochi-tech.ac.jp


Contents


1. General	•••••	1
2. Monitoring the transacylation from 1 to 2 by $^1 ext{H}$ NMR by using benzer	ne- d_6	
as a solvent (0.06 M)	•••••	2
3. Experimental procedure with results from NMR analysis for starting	keto ester 1	
and transacylated products 4 and 5		5
4. The reaction of propylamine with acetone in benzene- d_6	••••	6


1. General

All the reagents and solvents were purchased from Wako Pure Chemicals and used as received. The ¹H spectra were measured on a Bruker Ascend-400 at 400 MHz with TMS as an internal standard.

2. Monitoring the transacylation from 1 to 2 by 1H NMR by using benzene- d_6 as a solvent (0.06 M)

3. Experimental procedure with results from NMR analysis for starting keto ester 1 and transacylated products 4 and 5 $\,$

Ethyl 2-(2,4-dinitrophenyl)-3-hydroxy-2-butenoate (1)

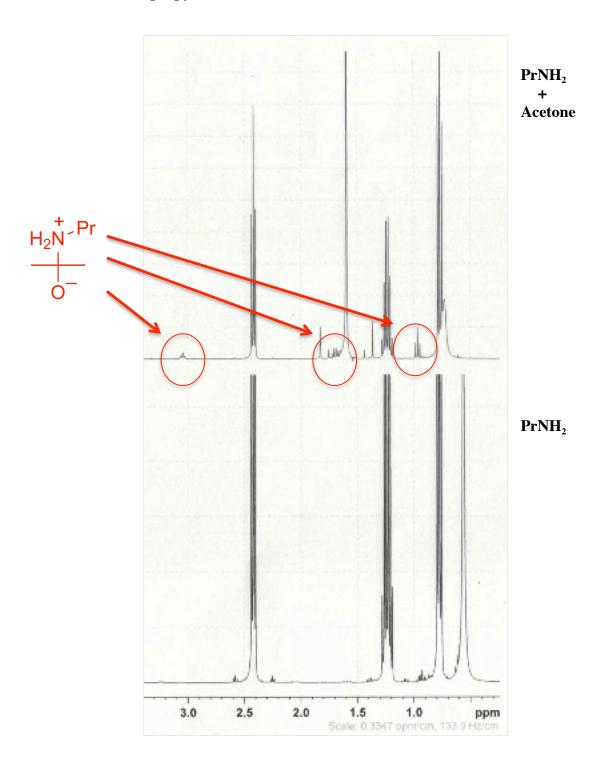
To a solution of ethyl 3-oxobutanoate (1.30 g, 10 mmol) in THF (10 mL), sodium hydride (60 wt %, 0.80 g, 20 mmol) was gradually added, and the mixture was stirred at room temperature for 15 min. Then 1-chloro-2,4-dinitrobenzene (2.02 g, 10 mmol) was added, and the resultant reddish solution was stirred for 1 day. After addition of 3 M hydrochloric acid (10 mL), generated sodium chloride was filtered off, and the filtrate was concentrated. The extraction of the residue with hot hexane (30 mL \times 3) followed by concentration afforded the keto ester 1 (2.70 g, 9.1 mmol, 91%). Further purification was performed with recrystallization from hexane (mp 93-94 °C, lit. 93.5-95 °C). 1 H NMR (400 MHz, C_6D_6)

 δ 0.81 (t, 3H, J = 7.2 Hz), 1.45 (s, 3H), 3.68 (dq, 1H, J = 7.2, 18.0 Hz), 3.93 (dq, 1H, J = 7.2, 18.0 Hz), 6.33 (d, 1H, J = 8.4 Hz), 7.47 (dd, 1H, J = 2.4, 8.4 Hz), 8.24 (d, 1H, J = 2.4 Hz), 13.64 (s, 1H).

N-propylacetamide (4)

¹H NMR (400 MHz, C₆D₆) δ 0.68 (t, 3H, J = 7.2 Hz), 1.22 (tq, 2H, J = 7.2, 7.2 Hz), 1.53 (s, 3H), 2.98 (dt, 2H, J = 6.0, 7.2 Hz), 4.5-4.7 (br, 1H).

Ethyl (2,4-dinitrophenyl)acetate (5)


 1 H NMR (400 MHz, $C_{6}D_{6}$)

 δ 0.94 (t, 3H, J = 7.2 Hz), 3.48 (s, 2H), 3.90 (q, 2H, J = 7.2 Hz), 6.29 (d, 1H, J = 8.4 Hz), 7.50 (dd, 1H, J = 2.4, 8.4 Hz), 8.31 (d, 1H, J = 2.4 Hz).

Reference

1 H. J. Shine, B.-J. Zhao, J. N. Marx, T. Ould-Ely, K. H. Whitmire, *J. Org. Chem.* **2004**, 69, 9255–9261.

4. The reaction of propylamine with acetone in benzene- d_6

