One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties

Jun Di^a, Jiexiang Xia^a, Sheng Yin^a, Hui Xu^b, Li Xu^c, Yuanguo Xu^a, Minqiang He^a, Huaming Li^{a,*}

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China

^bSchool of the Environment, Jiangsu University, Zhenjiang 212013, P. R. China

^cSchool of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013,

P. R. China

*Corresponding author: Tel.:+86-511-88791108; Fax: +86-511-88791108;

E-mail address: lhm@ujs.edu.cn

Figure S1 FT-IR of Cu/BiOCl (5:1) and BiOCl materials.

Figure S2 $(\alpha E_{\text{photon}})^{1/2}$ vs E_{photon} curves of the as-prepared samples.

Figure S3 Photocatalytic degradation of BPA in the presence of BiOCl, Cu/BiOCl (5:1) under visible light irradiation.

Figure S4 XRD patterns of Cu/BiOCl (5:1) before and after the photocatalytic experiments.

Figure S5 Nitrogen absorption-desorption isotherms of Cu/BiOCl (5:1) microspheres.

Figure S6 XPS of Cu/BiOCl (5:1) after the photocatalytic experiments.

Figure S7 UV-vis diffuse absorption spectra of the fresh and used Cu/BiOCl (5:1) samples.

Figure S8. Photocatalytic degradation of MB in the presence of BiOCl, Cu/BiOCl (5:1) under visible light irradiation.