Electronic Supporting Information

(S)-BINOL-based boronic ester fluorescence sensors for enantioselective recognition of α-phenyl ethylamine and phenylglycinol

Jiemin Jiao, Guo Wei, Fei Li, Xuerong Mao, Yixiang Cheng*, Chengjian Zhu*

Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

E-mail: yxcheng@nju.edu.cn and cjzhu@nju.edu.cn

Contents:

- 1. Enantioselective Recognition of (S)-L1, and (S)-L2 with α -phenyl ethylamine and phenylglycinol.
- 2. Fluorescence spectrum of (S)-L1 with other guest molecules.
- 3. Fluorescence spectrum of (S)-L2 with other guest molecules.
- 4. NMR spectra.
- 5. IR spectra and Mass.
- 6. ¹H NMR study of (S)-L1 and (S)-L2
- 7. UV-vis spectrum of (S)-L2 with phenyl amine

1. Enantioselective Recognition of (S)-L1, and (S)-L2 with α -phenyl ethylamine

and phenylglycinol.

 1.0×10^{-5} M solution of host compounds (S)-L1 and (S)-L2 in toluene, 0.01 M solution of (R)/(S)-phenyl ethylamine and (L)/(D)-phenylglycinol in THF were freshly prepared for each measurement. The resulting solution was allowed to stand at room temperature for 4 h before the fluorescence measurement.

1.1 Investigation of (S)-L1 with (R)/(S)-phenyl ethylamine

Figure S1. Fluorescence spectra of (S)-L1 with different molar ratio of (R)- α -phenyl ethylamine

Figure S2. Fluorescence spectra of (S)-L1 with different molar ratio of (S)- α -phenyl ethylamine

1.2 Investigation of (S)-L1 with (L)/(D)-phenylglycinol

Figure S3. Fluorescence spectra of (S)-L1 with different molar ratio of (L)-phenylglycinol.

Figure S4. Fluorescence spectra of (S)-L1 with different molar ratio of (D)-phenylglycinol.

1.3 Investigation of (S)-L2 with (R)-α-phenyl ethylamine

Figure S5. Fluorescence spectra of (S)-L2 with different molar ratio of (R)- α -phenyl ethylamine

Figure S6. Fluorescence Jobs plot of (*S*)-**L2** and (*R*)- α -phenyl ethylamine. Total concentration of (*S*)-**L2** and (*R*)-phenyl ethylamine is 5.0×10⁻⁵ M.

Figure S7. Relationship between $(I-I_0)^{-1}$ and $[c]^{-1}$. I: fluorescence intensity of (*S*)-L2 with (*R*)- α -phenyl ethylamine. I₀: fluorescence intensity of (*S*)-L2 without (*R*)- α -phenyl ethylamine (1.0×10⁻⁵ M in toluene); [c]: concentration of (*R*)- α -phenyl ethylamine in mixed solution.

Equation	y = a + b*x		
Weight	No Weighting		
Residual Sum of Squares	9.56899E-5		
Pearson's r	0.99946		
Adj. R-Square	0.99878		
		Value	Standard Error
С	Intercept	0.02642	0.00164
С	Slope	35.66808	0.41578

Table S1. Parameter of the fitting curve in Fig S7

1.4 Investigation of (S)-L2 with (S)- α -phenyl ethylamine

Figure S8. Fluorescence spectra of (S)-L2 with different molar ratio of (S)- α -phenyl ethylamine

Figure S9. Fluorescence Jobs plot of (*S*)-**L2** and (*S*)- α -phenyl ethylamine. Total concentration of (*S*)-**L2** and (*S*)- α -phenyl ethylamine is 5.0×10⁻⁵ M.

Figure S10. Relationship between $(I-I_0)^{-1}$ and $[c]^{-1}$. I: fluorescence intensity of (*S*)-L2 with (*S*)- α -phenyl ethylamine. I₀: fluorescence intensity of (*S*)-L2 without (*S*)- α -phenyl ethylamine (1.0×10⁻⁵ M in toluene); [c]: concentration of (*S*)- α -phenyl ethylamine in mixed solution.

Equation	y = a + b*x		
Weight	No Weighting		
Residual Sum of Squares	1.23073E-4		
Pearson's r	0.99755		
Adj. R-Square	0.99441		
		Value	Standard Error
С	Intercept	0.00439	0.00215
	Slope	19.61753	0.51986

Table S2: Parameters of the fitting curve in Fig. S10.

2. Fluorescence spectrum of (S)-L1 with other guest molecules.

Scheme1. Chiral guests used in the investigation of enantioselective recognition

Figure S11. Fluorescence emission spectra of (*S*)-L1(1.0×10^{-5} mol/L in toluene) towards (*L*)/(*D*)-phenylalaninol (1.0×10^{-2} mol/L in THF)

Figure S12. Fluorescence emission spectra of (S)-L1 (1.0×10^{-5} mol/L in toluene) towards (L)/(D)-tartaric acid (1.0×10^{-2} mol/L in THF)

Figure S13. Fluorescence emission spectra of (S)-L1 (1.0×10^{-5} mol/L in toluene) towards (L)/(D)-vaninol (1.0×10^{-2} mol/L in THF)

Figure S14. Fluorescence emission spectra of (S)-L1 (1.0×10^{-5} mol/L in toluene) towards (*R*,*R*)/(*S*,*S*)-diaminol hexane (1.0×10^{-2} mol/L in THF)

3. Fluorescence spectrum of (S)-L2 with other guest molecules.

Figure S15. Fluorescence emission spectra of (*S*)-**L2** (1.0×10^{-5} mol/L in toluene) towards (*L*)/(*D*)-phenylalaninol (1.0×10^{-2} mol/L in THF)

Figure S16. Fluorescence emission spectra of (*S*)-**L2** (1.0×10^{-5} mol/L in toluene) towards (*L*)/(*D*)-phenylglycinol (1.0×10^{-2} mol/L in THF)

Figure S17. Fluorescence emission spectra of (*S*)-**L2** (1.0×10^{-5} mol/L in toluene) towards (*R*,*R*)/(*S*,*S*)-diamino hexane (1.0×10^{-3} mol/L in THF)

Figure S18. Fluorescence emission spectra of (S)-L2 (1.0×10^{-5} mol/L in toluene) towards (L)/(D)-tartaric acid (1.0×10^{-2} mol/L in THF)

Figure S19. Fluorescence emission spectra of (S)-L2 (1.0×10^{-5} mol/L in toluene) towards (L)/(D)-vaninol (1.0×10^{-2} mol/L in THF)

4. NMR spectra.

Figure S20. ¹H NMR of 3 (d_6 -Acetone)

Figure S21. ¹³C NMR of **3** (*d*₆-DMSO)

Figure S22. ¹H NMR of 4 (d_6 -DMSO)

Figure S23. ¹H NMR of (S)-L1 (d_6 -Acetone)

Figure S24. ¹³C NMR of (*S*)-L1 (*d*₆-DMSO)

Figure S25. ¹H NMR of (S)-L2 (d_6 -Acetone)

Figure S27. IR spectrum of (S)-L1

Figure S28. IR spectrum of (S)-L2

Figure S29. ESI-MS of (S)-L1, $[C_{32}H_{20}B_2O_6 - H]^-$ calcd 521.14; found 521.10.

Figure S30. ESI-MS of (S)-L2, $[C_{32}H_{20}B_2O_4 - H]^-$ Calcd 489.15; found 489.10.

Figure S31. ESI-MS of (S)-L3, $[C_{40}H_{24}B_2O_6 + H_2O + Na]^+$ Calcd 663.18; found 663.50.

Figure S32. ESI-MS of (S)-L4, $[C_{40}H_{26}B_2N_2O_6 + H]^+$ Calcd 653.08; found 652.90.

6. ¹H NMR study of (S)-L1 and (S)-L2

5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2

Figure S33. Partial ¹H NMR spectrum of (*S*)-L1 + (*D*)-phenylglycinol (in d₆-Acetone). The total concentration of (*S*)-L1 and (*D*)-phenylglycinol remains at 2.0×10^{-4} mol/L.

The ¹H NMR spectra of (*S*)-L1 was determined as addition of (*D*)-phenylglycinol in different molar ratios. The H signal of amino group of guest compound (labeled as **a**) was shifted upfield upon addition of host compound from $\delta = 3.98$, and reached largest value at $\delta = 4.06$. This could be attributed to that B atom of host molecule played its role as electron acceptor, and amino group of guest played it role as electron donor.

Figure S34. Partial ¹H NMR spectrum of (*S*)-L2 + (*S*)- α -phenyl ethylamine (in d₆-Acetone). The total concentration of (*S*)-L2 and (*S*)- α -phenyl ethylamine remains at 1.0×10⁻⁴ mol/L.

The ¹H NMR spectra of (*S*)-L2 was also determined as addition of (*S*)- α -phenyl ethylamine in different molar ratios. The H signal of amino group of guest compound (labeled as **b**) was shifted upfield upon addition of host compound from $\delta = 4.01$, and reached largest value at $\delta = 4.13$. This could be attributed to the similar mechanism in (*S*)-L1.

7. UV-vis spectrum of (S)-L2 with phenyl amine

Herein, we further investigated UV-vis study of (S)-L2 towards both enantiomers of phenyl ethylamine. As demonstrated in Figure S29, we found that UV-vis spectrum of sensor (S)-L2 exhibits two absorption peaks situated at 288 nm and 322 nm, respectively. No obvious UV-vis absorbance change could be observed upon addition of (R)-phenyl ethylamine. However, the absorption peak at long wavelength region of 322 nm shows a little enhancement while sensor (S)-L2 was treated with (S)-phenyl ethylamine, indicating that sensor (S)-L2 exhibited higher coordinative effect upon (S)-phenyl ethylamine rather than (R)-phenyl ethylamine, which is coincident with fluorescence enantioselective recognition behavior.

Figure **S35**. UV-vis spectra of (*S*)-**L2** (0.5×10^{-6} mol/L in CHCl₃) towards (*R*)- and (*S*)- α -phenyl ethylamine (1.0×10^{-2} mol/L in THF) at 1:100 molar ratio.