SUPPORTING INFORMATION

Enhancing the Thermal and Mechanical properties of Epoxy Resins by Addition of Hyperbranched Aromatic Polyamide Grown on Microcrystalline Cellulose Fibers

Xiane Xiao¹, Shaorong Lu^{1*}, Bo Qi¹, Cen Zeng¹, Zhengkai Yuan¹, Jinhong Yu^{1,2*}

¹Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.

² Key Laboratory of Marine New Materials and Application Technology, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China

* Corresponding author. Fax: +86-773-5896671. Telephone: +86-773-5896438. Electronic mail: <u>yujinhong@glut.edu.cn</u> (*J.H. Yu*), <u>lushaor@163.com</u> (*S.R. Lu*)

SUPPLEMENT

Figure S1. The digital photograph of raw sisal fibers.

Figure S2. POM image of MCF fillers taken at room temperature.

Figure S3. Digital photograph of suspensions of MCF, γ -APTEOS-MCF and HBAP-MCF in ethanol for 2 hours after ultrasonic treatment (0.5 mg/ml).

Figure S4. XPS survey spectra of (a) MCF and (b) HBAP-MCF.