Fe₂(SO₄)₃·*x*H₂O on silica: an efficient and low-cost reaction system for the direct nucleophilic substitution of alcohols at solventless conditions

Lingjun Li, Anlian Zhu*, Yuqin Zhang, Xincui Fan, Guisheng Zhang

School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical

Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang,

Henan 453007, P. R. China

anlian_cn@aliyun.com.

1. Characterization of compounds 3a-n	S2-S7
2. References	S7-S8
3. Copies of ¹ H NMR spectrum for compound 3j	S9
4. Copies of ¹³ C NMR spectrum for compound 3j	S10
5. Copies of ¹ H NMR spectrum for compound 3k	S11
6. Copies of ¹³ C NMR spectrum for compound 3k	S12
7. Copies of ¹ H NMR spectrum for compound 31	S13
8. Copies of ¹³ C NMR spectrum for compound 31	S14
9. Copies of ¹ H NMR spectrum for compound 3m	S15
10. Copies of ¹³ C NMR spectrum for compound 3m	S16
11. Copies of ¹ H NMR spectrum for compound 30	S17
10. Copies of ¹³ C NMR spectrum for compound 30	S18

1 Characterization of compounds 3a-n

2-Benzhydryl-1-phenyl-butane-1,3-dione (3a).

The physical data shown below were comparable to those reported in literature.^[1] White solid, m.p. 155-156 °C, reported m.p. 156-157 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.96 (d, J = 8 Hz, 2 H), 7.77-7.03 (m, 13 H), 5.62 (d, J = 12 Hz, 1H), 5.10 (d, J = 12 Hz, 1H), 2.05 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 202.3, 193.1, 140.6, 140.2, 136.1, 132.5, 128.2, 128.0, 127.9, 127.3, 126.9, 126.6, 125.9, 68.2, 50.1, 27.1.

3-Benzhydryl-pentane-2,4-dione (3b).

The physical data shown below were comparable to those reported in literature.^[2] White solid, m.p. 114-115 °C, reported m.p.112-114°C; ¹H NMR (400 MHz, CDCl₃) δ : 7.48-7.03 (m, 10 H), 4.80 (d, J = 12 Hz, 1H), 7.73 (d, J = 12 Hz, 1H), 2.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ : 203.0, 141.3, 129.1, 127.9, 126.9, 74.1, 51.5, 30.1.

2-Benzhydryl-3-oxo-butyric acid ethyl ester (3c)

The physical data shown below were comparable to those reported in literature.^[3] White solid, m.p. 86-87°C, reported m.p. 84-86°C; ¹H NMR (400 MHz, CDCl₃) δ : 7.30-7.15 (m, 10 H), 4.76 (d, J = 12 Hz, 1 H), 4.56 (d, J = 12 Hz, 1 H), 4.01 (q, J = 7 Hz, 2 H), 2. 13 (s, 3 H), 1.05 (t, J = 7 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 202.1,

167.7, 141.3, 141.0, 129.0, 128.8, 128.0, 127.8, 127.1, 126.8, 65.3, 61.6, 51.1, 32.8, 13.6.

N-(4-nitrophenyl)-1,1'-diphenyl)-methyamine (3d)

The physical data shown below were comparable to those reported in literature.^[4] Yellow solid, m.p. 194-195°C, reported m.p. 195°C; ¹H NMR (400 MHz, CDCl₃) δ : 8.06-8.02 (m, 2H), 7.41-7.30 (m, 10H), 6.53-6.50 (m, 2H), 5.68 (d, J = 4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 153.1, 141.2, 139.3, 129.5, 128.7, 127.6, 126.7, 113.1, 63.0.

N-benzhydryl-p-toluenesulfonamide (3e)

The physical data shown below were comparable to those reported in literature. ^[4] White solid, m.p. 156-158 °C, reported m.p.157°C; ¹H NMR (400 MHz, CDCl3) δ : 7.55 (d, J = 8.2 Hz, 2H), 7.23-7.05 (m, 12H), 5.59 (d, J = 7.2 Hz, 1H), 5.18 (d, J = 7.2 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl3) δ : 143.0, 142.8, 139.9, 133.1, 131.1, 130.6, 130.2, 130.0, 59.8, 23.3.

N-benzhydrylbenzamide (3f)

The physical data shown below were comparable to those reported in literature.^[5]

White solid, m.p. 168-170 °C, reported m.p. 170°C; ¹H NMR (400 MHz, CDCl₃) δ: 7.88-7.42 (m, 5H), 7.41-7.33 (m, 10H), 6.71 (d, *J* = 7.8 Hz, 1H), 6.47 (d, *J* = 7.8 Hz, 1H), ¹³C NMR (CDCl₃, 100 MHz) δ: 166.5, 141.1, 133.6, 131.2, 128.0, 127.7, 127.5, 127.0, 126.8, 56.1.

N-Benzhydryl-N'-(2,4-dinitro-phenyl)-hydrazine (3g)

The physical data shown below were comparable to those reported in literature. ^[4] White solid, m.p. 164-165 °C, reported m.p. 165°C; ¹H NMR (400 MHz, CDCl₃) δ : 9.25 (s, 1H), 9.01 (d, J = 2 Hz, 1H), 8.31 (dd, $J_1 = 9$ Hz, $J_2 = 1$ Hz), 7.97 (d, J = 9 Hz, 1H), 7.46-7.32 (m, 10 H), 5.23 (d, J = 5.2 Hz, 1H), 4.50 (d, J = 6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 152.9, 140.2, 138.5, 134.1, 131.9, 130.2, 129.1, 128.6, 126.5, 121.2, 66.3.

2-[Bis-(4-chloro-phenyl)-methyl]-1-phenyl-butane-1,3-dione (3h).

The physical data shown below were comparable to those reported in literature. ^[1] White solid, m.p. 166-168 °C, reported m.p. 167-168 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.02 - 7.11 (m, 13 H), 5.55 (d, J = 12 Hz, 1H), 5.11 (d, J = 12 Hz, 1H), 2.08 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 201.1, 192.9, 139.1, 138.5, 135.4, 133.5, 132.5, 131.8, 128.2, 128.4, 128.3, 128.1, 127.9, 127.6, 67.8, 49.3, 26.8.

[Bis-(4-chloro-phenyl)-methyl]-(4-nitro-phenyl)-amine (3i).

The physical data shown below were comparable to those reported in literature. ^[1] Yellow solid, m.p. 194-195 °C, reported m.p. 193-195 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (m, 2H), 7.75-7.22 (m, 8H), 6.49 (d, J = 8.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 150.8, 137.8, 133.3, 128.7, 127.6, 125.0, 111.3, 60.0.

N-(bis(4-methoxyphenyl)methyl)-4-nitrobenzenamine(3j)

Yellow solid, m.p. 148-149 °C,¹H NMR (400 MHz, CDCl₃) δ : 8.04-6.48 (m, 12H), 5.54 (d, J = 4.8 Hz, 1H), 6.48 (d, J = 4.4 Hz, 1H), ¹³C NMR (CDCl₃, 100 MHz) δ : 159.1, 152.1, 133.3, 128.4, 126.2, 112.1, 114.3, 112.1, 61.1, 55.3. Element analysis C21H20N2O4 (C₂₁H₂₀N₂O₄): calculated C, 69.22; H, 5.53; N, 7.69; found C, 69.08; H, 5.66; N, 7.57. HRMS (ESI): calculated 387.1321 for C₂₁H₂₀N₂O₄ Na⁺, found 387.1311 (M+Na⁺).

4-methyl-N-(1-phenylethyl)benzenesulfonamide(3k)

White solid, m.p. 81-82 °C, ¹H NMR (400 MHz, CDCl₃) δ : 7.63-7.09 (m, 9H), 4.77 (d, J = 6.8 Hz, 1H), 4.46 (m, 1H), 2.39 (s, 3H), 1.43 (d, J = 6.8 Hz, 3H), ¹³C NMR (CDCl₃, 100 MHz) δ : 143.1, 142.0, 137.5, 129.4, 128.5, 127.1, 126.1, 53.6, 23.6, 21.5.

Element analysis ($C_{15}H_{17}NO_2S$): calculated C, 65.43; H, 6.22; N, 5.09; found C, 65..39; H, 6.24; N, 5.06. HRMS (ESI): calculated 298.0878 for $C_{15}H_{17}NO_2S$ Na⁺, found 298.0871 (M+Na⁺).

N-(1-(4-chlorophenyl)ethyl)-4-methylbenzenesulfonamide (31)

White solid, m.p. 138-139 °C, ¹H NMR (400 MHz, CDCl₃) δ : 7.59-7.029 (m, 8H), 4.84 (d, J = 6.8 Hz, 1H), 4.45 (m, 1H), 2.40 (s, 3H), 1.39 (d, J = 6.8 Hz, 3H), ¹³C NMR (CDCl₃, 100 MHz) δ : 143.4, 142.0, 137.4, 133.2, 129.5, 128.6, 127.6, 127.0, 53.0, 23.5, 21.5. Element analysis (C₁₅H₁₆CINO₂S): calculated C, 58.15; H, 5.21; N, 4.52; found C, 58.11; H, 5.25; N, 4.50. HRMS (ESI): calculated 332.0488 for C₁₅H₁₆CINO₂S Na⁺, found 332.0490 (M+Na⁺)

N-(1-(4-methoxyphenyl)ethyl)-4-methylbenzenesulfonamide(3m)

White solid, m.p. 96-98 °C, ¹H NMR (400 MHz, CDCl₃) δ : 7.63-6.72 (m, 8H), 4.69 (d, J = 6.4 Hz, 1H), 4.41 (m, 1H), 3.76 (s, 3H), 2.40 (s, 3H), 3.76 (s, 3H), 1.41 (d, J = 6.8 Hz, 3H), ¹³C NMR (CDCl₃, 100 MHz) δ : 158.9, 143.1, 137.6, 134.1, 129.4, 127.3, 127.1, 113.8, 55.3, 53.1, 23.4, 21.5. Element analysis (C₁₆H₁₉NO₃S): calculated C, 62.93; H, 6.27; N, 4.59; found C, 62.86; H, 6.30; N, 4.56. HRMS (ESI): calculated 328.0983 for C₁₆H₁₉NO₃S Na⁺, found 328.0991 (M+Na⁺)

N-(1,3-Diphenyl-allyl)-4-methyl-benzenesulfonamide (3n).

The physical data shown below were comparable to those reported in literature. ^[1] White solid, m.p. 166-167 °C, reported m.p. 167-168 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.69-7.66 (m, 2 H), 7.30-7.07 (m, 16 H (including the H of chloroform)), 6.39 (d, J = 16 Hz), 6.12 (dd, $J_1 = 16$ Hz, $J_2 = 6.8$ Hz), 5.15-5.12 (m, 1 H), 4.83 (d, J = 7.2 Hz), 2.41 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 137.5, 133.9, 131.8, 130.2, 126.7, 124.0, 123.3, 122.9, 122.6, 122.1, 122.0, 121.8, 121.3, 120.7, 53.8, 16.1.

2-((2,2-dimethylbenzo[d][1,3]dioxol-5-yl)methyl)-1-phenylbutane-1,3-dione (30)

White oil, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.8 Hz, 2H), 7.58 (d, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 2H), 6.67 (dd, *J* = 16.0, 7.1 Hz, 3H), 5.90 (s, 2H), 4.75 (t, *J* = 7.1 Hz, 1H), 3.31 – 3.17 (m, 2H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.28, 195.72, 147.73, 146.28, 136.41, 133.78, 132.04, 128.89, 128.73, 121.83, 109.24, 108.37, 100.93, 65.11, 34.53, 28.62. Element analysis (C₂₀H₂₀O₄): calculated C, 74.06; H, 6.21; found C, 74.03; H, 6.22. HRMS (ESI): calculated 347.1254 for C₂₀H₂₀O₄Na⁺, found 347.1257 (M+Na⁺)

References

[1] A. L. Zhu, L. J. Li, J. J. Wang, K. L. Zhuo, Green Chem., 2011, 13, 1244.

[2] K. Motokura, N. Nakagiri, T. Mizugaki, K. Ebitani and K. Kaneda, J. Org. Chem., 2007, 72, 6006.

[3] R. Sanz, D. Miguel, A. Martı'nez, J. M. Álvarez-Gutiérrez, F. Rodríguez. Org. Lett., 2007, 9, 2027.

[4] V. Terrasson, S. Marque, M. Georgy, J. M. Campagne, D. Prim, *Adv. Synth. Catal.*2006, **348**, 2063.

[5] T. Maki, K. Ishihara, H. Yamamoto, Org. Lett., 2006, 8, 1431.

3k

3k

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

