Supporting Information

An Easy Access of Tertiary Amides from Aldehydes and N, N-Dialkylchlorothiophosphoramidates

Uma Pathak,^{*†} Shubhankar Bhattacharyya,[†] Lokesh Kumar Pandey,[†] Sweta Mathur[†] and Rajeev Jain[‡]

[†]Synthetic Chemistry Division, Defence R & D Establishment, Jhansi Road, Gwalior-474002 (M. P.) India.

⁺School of Studies in Chemistry, Jiwaji University, Gwalior 474002 (India)

Contents

1.	General details	S2
2.	Experimental procedures	S 3
3.	Spectroscopic characterization data	S4-S6
4.	Copies of ¹ H, ¹³ C, ³¹ P NMR and Mass spectra	S10-S36

1. General details

Aldehydes were obtained from commercial supplier, and used without further purification. Thin-layer chromatography (TLC) was conducted with E-Merck silica gel 60 F₂₅₄ precoated plates (0.25 mm) and visualized via UV and Iodine. Column chromatographic purification of products was performed on silica gel (60-120 mesh). ¹H NMR ¹³C, and ³¹P NMR spectra were recorded on a Bruker AVANCE II 400 MHz and 600 MHz. Chemical shifts were expressed in parts per millions (δ) downfield from the internal standard tetramethylsilane and were reported as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Mass spectra was obtained in Agilent 5975C GC-MS with DB5-MS (30.0 m x 0.25 mm) and Elemental analysis was performed on Elementar vario MICRO cube CHNS analyser.

2. Experimental procedures

A) Preparation of amides (Entry No. 1-10 & 14, 15):

Thiophosphoramidate (1.2 mmol) and Et₃N (5 mmol) were mixed together. The combined mixture was added in portions (1/10th part) to aldehyde (1 mmol) at 80-90 °C with continuous stirring, over a period of 1.5-2.5 hrs (as indicated in table 1) and each addition was followed by addition of 30 μ L of 50% aqueous H₂O₂. Reaction was monitored by GC and TLC. Heating was continued, and after half an hour 50 μ L of H₂O₂ and 150 μ L of Et₃N were added. At this stage there was a near complete disappearance of aldehyde. Contents were heated further half an hour, then cooled and neutralized with 10% K₂CO₃ solution, extracted with hexane and further purified by column chromatography (Hexane : Ethyl acetate).

B) Preparation of amides (Entry No. 11-13, 16):

Thiophosphoramidate (2 mmol) and Et_3N (10 mmol) were mixed together. The combined mixture was added in portions (1/20th part) to aldehyde (1 mmol) at 80-90 °C with continuous stirring over a period of 4-6.5 hrs (as indicated in table 1) and each addition was followed by addition of 30 µL of 50% aqueous H_2O_2 . The reaction was then followed similar to method A except for entry 16. For entry 16, after neutralization with 10% K_2CO_3 , pH was adjusted to 2-3 with the help of dilute HCl and contents were extracted with diethyl ether. Ether layer was separated and washed with 10% NaHCO₃ solution. Further purification was achieved by column chromatography similar to other amides.

C) Preparation of amides from aliphatic aldehydes (entry 17, 18):

Aldehyde (1 mmol) and triethylamine (5 mmol) were mixed together. To this, thiophosphoramidate (1.2 m mol) was added in portions ($1/10^{th}$ part) over a period of 3 hrs at 60-70 °C. Each addition of thiophosphoramidate was followed by addition of 30 µL of 50% aqueous H₂O₂. Further reaction monitoring and work up was done similar to method A.

D) Preparation of N, N-Dialkylchlorothiophosphoramidates:

PSCl₃ (20 mmol) was taken in 10 mL of DCM and dialkyl amine (20 mmol) was added drop wise with constant stirring at 0-5 °C. When the addition of secondary amine is over, triethylamine (22 mmol) was added slowly at the same temperature and reaction mixture was stirred for 30 min.

Temperature of the mixture then gradually increased to 60°C and reaction was continued further for half an hour. Contents were diluted with hexane and filter through a funnel having a bed of silica gel (2 cm). The organic layer was washed with dilute HCl, followed by 5% NaHCO₃ solution. After drying is over sodium sulfate, solvent removed under Ν, Nvacuum and pure dialkylchlorothiophosphoramidate is obtained as light yellow viscous liquid. It was used as such further reaction.

3. Spectroscopic characterization data

I) Amides (entry 1-18):

- N, N-Dibutyl-p-chlorobenzamide: colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.28 (m, 4H), 3.47 (br, s, 2H), 3.17 (br, s, 2H), 1.62 (br, s, 2H), 1.47 (br, s, 2H), 1.39 (br, s, 2H), 1.14 (br, s, 2H), 0.96 (br, s, 3H), 0.80 (br, s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 170.54, 135.77, 135.03, 128.61, 128.02, 48.84, 44.61, 30.84, 29.63, 20.27, 19.78, 13.84, 13.67; EIMS: 267 [M⁺](5), 266[M⁺-1](4), 224(11), 141(32), 139(100), 111(18), 75(5); Anal. Calcd for C₁₅H₂₂CINO. C, 67.28; H, 8.28; N, 5.23. Found C, 67.37; H, 8.22; N, 5.18.
- **N**, *N*-Dihexyl-*p*-chlorobenzamide: pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 4H), 3.46 (s, 2H), 3.16 (s, 2H), 1.63 (s, 2H), 1.47 (s, 2H), 1.34-0.84 (m, 18H); ¹³C NMR (100.6 MHz, CDCl₃) δ 170.54, 135.78, 135.06, 128.63, 128.03, 49.10, 44.92, 31.61, 31.29, 28.67, 27.49, 26.75, 26.22, 22.56, 13.98; EIMS: 323[M⁺](6), 322[M⁺-1](7), 252(17), 182(7), 141(33), 139(100), 111(13); Anal. Calcd for C₁₉H₃₀CINO. C, 70.45; H, 9.34; N, 4.32. Found: C, 70.54; H, 9.27; N, 4.28.
- 3) (4-Chloro-phenyl)-(2-methyl-piperidin-1-yl)-methanone: colourless oil;¹H NMR (400 MHz, CDCl₃) δ 7.41-7.30 (m, 4H), 4.24 (br, 2H), 3.00 (br s, 1H), 1.67 (br s, 4H), 1.54 1.46 (br m, 2H), 1.23 (d, 3H, *J*=6.8); ¹³C NMR (100.6 MHz, CDCl₃) δ 169.50, 135.26, 131.41, 128.75, 127.99, 30.32, 26.01, 18.84, 16.18; EIMS: 237[M⁺](18), 236[M⁺-1](20), 222(14), 141(33), 139 (100), 111(25), 75(8); Anal. Calcd for C₁₃H₁₆CINO. C, 65.68; H, 6.78; N, 5.89. Found: C, 65.74; H, 6.81; N, 5.78.
- **A)** *N*, *N*-Dihexylbenzamide: pale yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.41-7.36 (m, 5H), 3.50 (br, s, 2H), 3.20 (br, s, 2H), 1.68 (br, s, 2H), 1.50 (br, s, 2H), 1.37 (br, s, 6H), 1.24 (br, d, 2H, *J*=6 Hz), 1.13 (br, s, 4H), 0.93 (s, 3H), 0.86 (d, 3H, *J*=6.6 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 171.64, 137.42, 128.99, 128.34, 126.45, 49.00, 44.70, 31.67, 31.26, 29.72, 28.62, 27.50, 26.77, 26.19, 22.65, 22.45, 14.07, 13.94; EIMS: 289 [M⁺](6), 288[M⁺-1](7), 218(14), 148(6), 105(100), 77(17); Anal Calcd for C₁₅H₂₃NO. C, 78.84; H, 10.79; N, 4.84. Found: C, 78.75; H, 10.84, N, 4.86.
- **N**, *N*-Dibutyl-*o*-fluorobenzamide: colourless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.28 (m, 2H), 7.17 (dt, 1H, J₁=1.8 Hz, J₂=9.6 Hz), 7.07 (t, 1H, J=13.2 Hz), 3.51 (br, s, 2H), 3.13 (t, 2H, J=11.4 Hz), 1.68-1.61 (m, 2H), 1.48-1.35 (m, 4H), 1.12 (sext, 2H, J=10.6 Hz), 0.97 (t, 3H, J=11.4 Hz), 0.76 (t, 3H, J=10.8 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 166.57, 157.97 (d, J_{CF}=246.7 Hz), 130.65 (d, J_{CF}=7.69 Hz), 128.65 (d, J_{CF}=3.62 Hz), 125.49 (d, J_{CF}=18.40 Hz), 124.43 (d, J_{CF}=3.47 Hz), 115.74 (d, J_{CF}=21.72 Hz), 48.25, 44.34, 30.52, 29.54, 20.19, 19.69, 13.94, 13.55. EIMS: 251 [M⁺](4), 208(14), 166(6),

123(100), 95(12), 75(2); Anal. Calcd for $C_{15}H_{22}FNO.$ C, 71.68; H, 8.82; N, 5.57. Found: C, 71.79; H, 8.77; N, 5.50.

- **N, N-Dibutyl-o-bromobenzamide**: colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, 1H, *J*=5.6 Hz), 7.38-7.35 (m, 1H), 7.27-7.23 (m, 2H), 3.82-3.80 (m, 1H), 3.27-3.23 (m, 1H), 3.11-3.07 (m, 2H), 1.73-1.67 (m, 2H), 1.57-1.40 (m, 4H), 1.17-1.13 (m, 2H), 1.00 (t, 3H, *J*=4.8 Hz), 0.79 (t, 3H, *J*=5.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 168.85, 138.90, 132.71, 129.89, 127.86, 127.46, 119.27, 48.10, 44.34, 30.51, 29.27, 20.42, 19.80, 13.95, 13.59; EIMS: 312 [M⁺+2](7), 310 [M⁺](7), 270(10), 268(10), 232(28), 185(96), 183(100), 157(15), 155(16), 105(11), 77(8); Anal. Calcd for C₁₅H₂₂BrNO. C, 57.70; H, 7.10; N, 4.49. Found: C, 57.56, H, 7.17; N, 4.54.
- **7)** *N*, *N*-Dibutyl-*p*-nitrobenzamide: yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, 2H, *J*=8.4 Hz), 7.54 (d, 2H, *J*=9H), 3.52 (t, 2H, *J*=7.2 Hz), 3.15 (t, 2H, *J*=7.2 Hz), 1.67 (t, 2H, *J*=7.2 Hz), 1.50 (t, 2H, *J*=7.2 Hz), 1.44-1.41 (m, 2H), 1.17-1.13 (m, 2H), 1.00 (t, 3H, *J*=7.2 Hz), 0.81 (t, 3H, *J*=7.2 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 169.27, 147.92, 143.52, 127.51, 123.82, 48.73, 44.62, 30.76, 29.55, 20.27, 19.73, 13.92, 13.61; EIMS: 278 [M⁺](3), 277(4), 235(26), 193(9), 150(100), 120(11), 104(21), 76(8); Anal. Calcd for C₁₅H₂₂N₂O₃. C, 64.73; H, 7.97; N, 10.06. Found: C, 64.86; H, 7.91; N, 9.97.
- 8) N, N-Dibutyl-p-ethylbenzamide: colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.22 (m, 4H), 3.50 (br, s, 2H), 3.23 (br, s, 2H), 2.69 (q, 2H, J=7.2 Hz), 1.65 (s, 2H), 1.51 (br, s, 2H), 1.42 (br, s, 2H), 1.27-1.25 (m, 3H), 1.17 (br, s, 2H), 1.00 (br, s, 3H), 0.82 (br, s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 171.87, 145.29, 134.68, 127.76, 126.60, 48.82, 44.46, 30.85, 29.68, 28.92, 20.34, 19.78, 15.45, 13.97, 13.67; EIMS: 261 [M⁺](18), 260(21), 218(18), 134(20), 133(100), 105(15), 79(12); Anal. Calcd for C₁₇H₂₇NO. C, 78.11; H, 10.41; N, 5.36. Found: C, 78.24; H, 10.34; 5.29.
- 9) N, N-Diethyl-2-methyl-benzamide: dark yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.14 (m, 4H), 3.75-3.35 (br, m, 2H), 3.12 (q, 2H), 2.28 (s, 3H), 1.26 (t, 3H, *J*=7.2 Hz), 1.02 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 170.72, 137.05, 133.70, 130.16, 128.39, 125.64, 125.30, 42.47, 38.55, 18.66, 13.87, 12.76; EIMS: 191 [M⁺](33), 190 [M⁺-1](58), 176(49), 119(100), 118(24), 91(76), 65(24); Anal. Calcd for C₁₂H₁₇NO. C, 75.35; H, 8.96; N, 7.32. Found: C, 75.20, H, 9.02; N, 7.39.
- 10) 2-Methyl-*N*, *N*-dipropyl-benzamide: colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.13 (m, 4H), 3.67 (br, s, 1H), 3.28 (br, s, 1H), 3.02 (s, 2H), 2.28 (s, 3H), 1.70 (sext, 2H), 1.51-1.44 (m, 2H), 0.98 (t, 3H, *J*=7.2 Hz), 0.71 (t, 3H, 7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 171.31, 137.24, 133.85, 130.25, 128.46, 125.78, 125.68, 49.95, 45.87, 21.67, 20.67, 18.93, 11.56, 11.10; EIMS: 219[M⁺+1](5), 218(8), 204(18), 120(9), 119(100), 91(25), 65(6), Anal. Calcd for C₁₄H₂₁NO. C, 76.67; H, 9.65; N, 6.39. Found: C, 76.82; H, 9.59; N, 6.32.
- 11) N, N-Dipropyl-p-methoxybenzamide: colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, 2H, J=8.4 Hz), 6.89 (d, 2H, J=8.4 Hz), 3.82 (s, 3H), 3.41 (br, s, 2H), 3.22 (br, s, 2H), 1.61 (br, s, 4H), 0.95 (br, s, 3H), 0.78 (br, s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 171.71, 160.19, 129.69, 128.35, 113.63, 55.30, 50.82, 46.54, 21.75, 20.86, 11.25; EIMS: 235(7), 234(10), 164(5), 136(9), 135(100), 92(7), 77(9) Anal. Calcd for C₁₄H₂₁NO₂. C, 71.46; H, 8.99; N, 5.95. Found: C, 71.33; H, 9.08; N, 5.97.
- 12) N, N-DibutyInaphthalene -1-carboxamide: colourless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.88-7.40 (m, 7H), 3.83 (br, s, 1H), 3.47 (br, s, 1H), 3.07-3.02 (m, 2H), 1.82-1.79 (m, 2H), 1.53-1.49 (m, 2H), 1.46-1.43 (m, 2H), 1.08-1.04 (m, 5H), 0.67 (t, 3H, *J*=7.2 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 170.64, 135.24, 133.45, 129.66, 128.74, 128.34, 126.83, 126.31, 125.07, 124.88, 123.50, 48.50, 44.40,

30.81, 29.75, 20.50, 19.66, 14.01, 13.51; EIMS: 283 [M^+](48), 282 [M^+ -1] (32), 240(27), 184(16), 155 (100), 127(87); Anal. Calcd for C₁₉H₂₅NO. C, 80.52, H, 8.89; N, 4.94. Found: C, 80.40; H, 8.94; N, 5.00.

- 13) N, N-DibutyInaphthalene -2-carboxamide: colourless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.90-7.47 (m, 7H), 3.57 (br, s, 2H), 3.27 (br, s, 2H), 1.72-1.70 (d, 2H), 1.54 (br, s, 2H), 1.47 (br, s, 2H), 1.15 (br, s, 2H), 1.03 (br, s, 3H), 0.79 (br, s, 3H); ¹³C NMR (150.9 MHz, CDCl₃) δ 171.65, 134.73, 133.37, 132.79, 128.31, 128.21, 127.81, 126.74, 126.56, 125.97, 124.17, 48.90, 44.54, 30.90, 29.72, 20.38, 19.77, 14.00, 13.69; EIMS: 283 [M⁺](20), 282(14), 240(12), 184(8), 156(14), 155(100), 127(49); Anal. Calcd for C₁₉H₂₅NO. C, 80.52, H, 8.89; N, 4.94. Found: C, 80.60; H, 8.85; N, 4.88.
- 14) N, N-Dibutyl-thiophene-2-carboxamide: pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.04 (m, 3H), 3.48 (t, 4H, *J*=7.6 Hz), 1.69-1.61 (m, 4H), 1.36-1.33 (m, 4H), 0.95 (t, 6H, *J*=6.8 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 164.12, 138.34, 128.22, 128.15, 126.67, 29.73, 20.14, 13.89; EIMS: 239 [M⁺](4), 206(15), 196(13), 111(100), 83(5); Anal. Calcd for C₁₃H₂₁NOS. C, 65.23; H, 8.84, N, 5.85, S, 13.40. Found: C, 65.36; H, 8.76, N, 5.77; S, 13.42
- 15) N, N-Dipropyl-isonicotinamide: pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, 2H, J=4.4 Hz), 7.25 (d, 2H, J=4.8 Hz), 3.46 (t, 2H, J=7.6 Hz), 3.10 (t, 2H, J=7.6 Hz), 1.67 (sext, 2H, J=7.6 Hz), 1.53 (sext, 2H, J=7.6 Hz), 0.98 (t, 3H, J=7.2 Hz), 0.756 (t, 3H, J=7.6 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 169.14, 150.19, 144.94, 120.90, 50.50, 46.34, 29.69, 21.94, 20.69, 11.38, 10.98; EIMS: 206[M⁺](14), 205[M⁺-1] (14), 177(21), 135(7), 107(8), 106(100), 78(27), 51(8); Anal. Calcd for C₁₂H₁₈N₂O. C, 69.87; H, 8.80; N, 13.58. Found: C, 69.73; H, 8.86; N, 13.65
- 16) N, N-Dibutyl-m-hydroxybenzamide: colourless oil; 1H NMR (400 MHz, CDCl3) δ 7.13 (t, 1H, J=7.6 Hz), 6.84 (s, 1H), 6.77-6.73 (m, 2H), 3.48 (t, 2H, J=7.6 Hz), 3.19 (t, 2H, J=7.6), 1.65-1.59 (m, 2H), 1.50-1.36 (m, 4H), 1.15-1.09 (m, 2H), 0.971 (t, 3H, J=7.2 Hz), 0.780 (t, 3H, J=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 172.54, 157.07, 137.10, 129.37, 117.09, 114.34, 48.98, 44.72, 30.69, 29.55, 20.28, 19.74, 13.94, 13.61; EIMS: 249(12), 206 (11), 122 (8), 121 (100), 93 (13); Anal. Calcd for C₁₅H₂₃NO₂. C, 72.25; H, 9.30; N, 5.62. Found: C, 72.14; H, 9.32; N, 5.63
- 17) *N,N*-Diethyl dodecanamide: light yellow oil; ¹H NMR (400 MHz, CDCl3) δ 3.36 (q, 2H, *J*=7.2 Hz), 3.30 (q, 2H, *J*=7.2 Hz), 2.28 (t, 2H, *J*=7.6 Hz), 1.63 (br m, 2H), 1.30-1.25 (m, 16H), 1.17 (t, 3H, *J*=7.2 Hz), 1.10 (t, 3H, *J*=7.2 Hz), 0.87 (t, 3H, *J*=6.8 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 172.38, 41.98, 40.03, 33.21, 31.93, 29.65, 29.64, 29.57, 29.55, 29.52, 29.35, 25.55, 22.70, 14.43, 14.12, 13.14; EIMS: Anal. Calcd for C₁₆H₃₃NO. C, 72.23; H, 13.02; N, 5.48; O, 6.26. Found: C, 72.37; H, 13.14; N, 5.45; O, 6.27
- 18) N,N-Dibutyl dodecanamide: light yellow oil; ¹H NMR (400 MHz, CDCl3) δ 3.29 (t, 2H, J=7.6 Hz), 3.20 (t, 2H, J=7.6 Hz), 2.27 (t, 2H, J=7.6 Hz), 1.64-1.61 (m, 4H), 1.57-1.46 (m, 4H), 1.37-1.25 (m, 18H), 0.96-0.86 (m, 9H); ¹³C NMR (100.6 MHz, CDCl₃) δ 173.28, 47.81, 45.66, 33.20, 31.92, 31.28, 29.93, 29.64, 29.62, 29.54, 29.49, 29.34, 29.28, 29.13, 25.58, 24.85, 22.69, 20.27, 20.12, 14.11, 13.90, 13.83; EIMS: Anal. Calcd for C₂₀H₄₁NO. C, 77.10; H, 13.26; N, 4.50; O, 5.14. Found: C, 77.24; H, 13.29; N, 4.48; O, 5.15.

II) N, N-Dialkylchlorothiophosphoramidates:

- N, N-Diethylchlorothiophosphoramidates: yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 3.49 (dq, 4H, J_{PH}=21.2 Hz, J=8.0 Hz), 1.24 (t, 6H, J=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 42.22 (d, J_{PC}=3.7 Hz), 13.30 (d, J_{PC}=3.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 61.40. EIMS: 174(58), 172(100), 170(37), 162(22), 133(18), 56(53).
- **N**, *N*-Dipropylchlorothiophosphoramidates: yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 3.36 (dt, 4H, J_{PH}=18.4 Hz, J_{HH}=7.6 Hz), 1.66 (sext, 4H, J=7.6 Hz), 0.94 (t, 6H, J=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 49.29 (d, J_{PC}= 2.6 Hz), 20.92 (d, J_{PC}=3.7 Hz), 11.14; ³¹P NMR (162 MHz, CDCl₃) δ 62.87; EIMS: 206(27), 204(50), 202(61), 200(100), 198(24), 164(59), 162(84), 70(62).
- **3)** *N*, *N*-Dibutylchlorothiophosphoramidates: yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 3.43-3.34 (m, 4H), 1.61 (quint, 4H, *J*=7.6 Hz), 1.35 (sext, 4H, *J*=7.6 Hz), 0.96 (t, 6H, *J*=7.6 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 47.35 (d, *J*_{PC}=2.8 Hz), 29.6 (d, *J*_{PC}=3.6 Hz), 19.83, 13.67; ³¹P NMR (162 MHz, CDCl₃) δ 62.56; EIMS: 230(64), 228(100), 178(54), 176(79), 164(29), 162(42), 99(20), 84(81), 57(27).
- **A**, *N*-Dihexylchlorothiophosphoramidates: yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 3.41-3.33 (m, 4H), 1.62 (t, 4H, *J*=6.8 Hz), 1.31 (s, 12H), 0.89 (t, 6H, *J*=6.4 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 47.75 (d, *J*_{PC}=2.7 Hz), 31.44, 27.62 (d, *J*_{PC}=3.6 Hz), 26.38, 22.56, 13.98; ³¹P NMR (162 MHz, CDCl₃) δ 62.55; EIMS: 284(100), 286(66), 178(56), 176(79), 162(22), 127(20), 112(88).
- 5) (2-methylpiperidin-1-yl)phosphonothioic dichloride: yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.60-4.53 (m, 1H), 3.99-3.91 (m, 1H), 3.12-3.01 (m, 1H), 1.82-1.48 (m, 6H), 1.29 (d, 3H, J=6.8 Hz);
 ¹³C NMR (100.6 MHz, CDCl₃) δ 50.28, 41.57, 30.26 (d, J_{PC}=6.1 Hz), 25.60 (d, J_{PC}=4.7 Hz), 18.33 (d, J_{PC}=1.0 Hz), 15.88 (d, J_{PC}=3.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 59.44; EIMS: 200(61), 198(100), 97(83), 83(23), 69(30).

4. Copies of ¹H NMR and ¹³C NMR

- **1.** ¹H NMR spectra of *N*, *N*-Dibutyl-*p*-chlorobenzamide
- **2.** ¹³C NMR spectra of *N*, *N*-Dibutyl-*p*-chlorobenzamide
- **3.** ¹H NMR spectra of *N*, *N*-Dihexyl-*p*-chlorobenzamide
- **4.** ¹³C NMR spectra of *N*, *N*-Dihexyl-*p*-chlorobenzamide
- **5.** ¹H NMR spectra of (4-Chloro-phenyl)-(2-methyl-piperidin-1-yl)-methanone
- **6.** ¹³C NMR of (4-Chloro-phenyl)-(2-methyl-piperidin-1-yl)-methanone
- **7.** ¹H NMR spectra of *N*, *N*-Dihexylbenzamide
- **8.** ¹³C NMR spectra of *N*, *N*-Dihexylbenzamide
- **9.** ¹H NMR spectra of *N*, *N*-Dibutyl-*o*-fluorobenzamide

- **10.** ¹³C NMR spectra of *N*, *N*-Dibutyl-*o*-fluorobenzamide
- **11.** ¹H NMR spectra of *N*, *N*-Dibutyl-*o*-bromobenzamide
- **12.** ¹³C NMR spectra of *N*, *N*-Dibutyl-o-bromobenzamide
- **13.** ¹H NMR spectra of *N*, *N*-Dibutyl-*p*-nitrobenzamide
- **14.** ¹³C NMR spectra of *N*, *N*-Dibutyl-*p*-nitrobenzamide
- **15.** ¹H NMR spectra of *N*, *N*-Dibutyl-*p*-ethylbenzamide
- **16.** ¹³C NMR spectra of *N*, *N*-Dibutyl-*p*-ethylbenzamide
- **17.** ¹H NMR spectra of *N*, *N*-Diethyl-2-methyl-benzamide
- **18.** ¹³C NMR spectra of *N*, *N*-Diethyl-2-methyl-benzamide
- **19.** ¹H spectra of 2-Methyl-*N*, *N*-dipropyl-benzamide
- **20.** ¹³C NMR spectra of 2-Methyl-*N*, *N*-dipropyl-benzamide
- **21.** ¹H NMR spectra of *N*, *N*-Dipropyl-*p*-methoxybenzamide
- **22.** ¹³C NMR of *N*, *N*-Dipropyl-*p*-methoxybenzamide
- **23.** ¹H NMR spectra of *N*, *N*-Dibutylnaphthalene -1-carboxamide
- **24.** ¹³C NMR of *N*, *N*-Dibutylnaphthalene -1-carboxamide
- **25.** ¹H NMR of *N*, *N*-Dibutylnaphthalene -2-carboxamide
- **26.** ¹³C NMR of *N*, *N*-DibutyInaphthalene -2-carboxamide
- **27.** ¹H NMR spectra of *N*, *N*-Dibutyl-thiophene-2-carboxamide
- **28.** ¹³C NMR spectra of *N*, *N*-Dibutyl-thiophene-2-carboxamide
- **29.** ¹H NMR spectra of *N*, *N*-Dipropyl-isonicotinamide
- **30.** ¹³C NMR spectra of *N*, *N*-Dipropyl-isonicotinamide
- **31.** ¹H NMR spectra of *N*, *N*-Dibuty-m-hydroxybenzamide
- **32.** ¹³C NMR spectra of *N*, *N*-Dibuty-m-hydroxybenzamide

- **33.** ¹H NMR spectra of *N*,*N*-Diethyl dodecanamide
- **34.** ¹³C NMR spectra of *N*,*N*-Diethyl dodecanamide
- **35.** ¹H NMR spectra of *N*,*N*-butyl dodecanamide
- **36.** ¹³C NMR spectra of *N*,*N*-butyl dodecanamide
- **37.** ¹H NMR of Diethylphosphoramidothioic dichloride
- **38.** ¹³C NMR of Diethylphosphoramidothioic dichloride
- **39.** ³¹P NMR spectra of Diethylphosphoramidothioic dichloride
- **40.** ¹H NMR spectra of Dipropylphosphoramidothioic dichloride
- **41.** ¹³C NMR of Dipropylphosphoramidothioic dichloride
- **42.** ³¹P NMR spectra of Dipropylphosphoramidothioic dichloride
- **43.** ¹H NMR spectra of Dibutylphosphoramidothioic dichloride
- **44.** ¹³C NMR spectra of Dibutylphosphoramidothioic dichloride
- **45.** ³¹P NMR spectra of Dibutylphosphoramidothioic dichloride
- **46.** ¹H NMR spectra of Dihexylphosphoramidothioic dichloride
- **47.** ¹³C NMR spectra of Dihexylphosphoramidothioic dichloride
- **48.** ³¹P NMR spectra of Dihexylphosphoramidothioic dichloride
- **49.** ¹H NMR spectra of (2-methylpiperidin-1-yl)phosphonothioic dichloride
- **50.** ¹³C NMR spectra of (2-methylpiperidin-1-yl)phosphonothioic dichloride
- **51.** ³¹P NMR spectra of (2-methylpiperidin-1-yl)phosphonothioic dichloride
- **52.** ³¹P NMR spectra of *N*, *N*-dibutylchlorothiophosphoramidate/4-chlorobenzoic acid reaction
- **53.** ³¹P NMR spectra of N, N-dibutylchlorothiophosphoramidate/4-chlorobenzaldehyde reaction

10 10

S15

 $^{\rm 31}{\rm P}$ NMR of N, N-dibutylchlorothiophosphoramidate/4-chlorobenzoic acid reaction

³¹P NMR of *N*, *N*-dibutylchlorothiophosphoramidate/4-chlorobenzaldehyde reaction