Supporting Information

Titanium isopropoxide complexes supported by pyrrolyl Schiff base ligands: syntheses, structures, and antitumor activity

Miaoshui Lin,^{*a*} Yuhua Cao,^{*b*} Hao Pei,^{*a*} Yanmei Chen,^{*a*} Jian Wu,^{*a*} Yahong Li^{**a*, *c*} and Wei Liu^{**a*}

- 1. ¹H and ¹³C NMR spectra for the complexes 1-4.
- 2. Crystallography data for complexes **1** and **3**.

1. ¹H and ¹³C NMR spectra for the complexes 1-4.

1.1 ¹H and ¹³C NMR spectra for $Ti(O^{i}Pr)_{2}(L1)_{2}(1)$

¹H NMR (300 MHz,CDCl₃) δ 8.44 (s, 2H, N=CH), 7.87 (s, 2H, pyridine-H), 7.47 (t, 2H, pyridine-H), 7.19 (s, 2H, pyridine-H), 7.07 (d, 2H, pyridine-H), 6.82 (d, 2H, pyrrole-H), 6.48 (s, 2H, pyrrole-H), 6.18 (s, 2H, pyrrole-H), 4.59–4.44 (m, 2H, OCH), 4.05 (q, 4H, NCH2), 1.03 (d, 6H, CH3), 0.95 (d, 6H, CH3). ¹³C NMR (75 MHz, CDCl₃) δ 160.69, 157.96, 149.11, 137.46, 136.45, 136.27, 123.71, 122.12, 114.55, 110.27, 79.61, 61.39, 25.72, 25.60.

1.2 ¹H and ¹³C NMR spectra for $Ti(O^{i}Pr)_{2}(L2)_{2}$ (2)

¹H NMR (300 MHz, CDCl₃) δ 8.48 (s, 2H, N=CH), 7.94 (s, 4H, Ar-H), 7.54 (s, 2H, Ar-H), 7.16 (s, 2H, Ar-H), 6.96 (s, 2H, Ar-H), 6.89 (m, 2H, pyrrole-H), 6.56 (t, 2H, pyrrole-H), 6.16 (d, 2H, pyrrole-H), 5.05 (t, 2H, OCH), 1.32 (d, 12H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 159.12, 138.31, 137.69, 136.82, 129.48, 128.66, 127.58, 114.31, 110.41, 79.86, 26.12, 26.02.

1.3 ¹H and ¹³C NMR spectra for $Ti(O^{i}Pr)_{2}(L3)_{2}(3)$

¹H NMR (300 MHz, CDCl₃) δ 7.86 (s, 2H, N=CH), 7.45 (s, 8H, Ar-H), 7.18 (s, 4H, Ar-H+pyrrole-H), 6.65 (s, 2H, pyrrole-H), 6.40 (s,2H, pyrrole-H), 4.82 (s, 2H, OCH), 4.22 (d, 2H, NCH₂), 4.08 (d, 2H, NCH₂), 1.38–1.28 (m, 6H, CH₃), 1.25 (d, 6H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 158.85, 138.04, 137.43, 136.56, 129.21, 128.39, 127.31, 114.05, 110.14, 79.59, 59.20, 25.85, 25.75.

1.4 ¹H and ¹³C NMR spectra for $Ti(O^{i}Pr)_{2}(L4)_{2}$ (4)

¹H NMR (400 MHz,CDCl₃) δ 7.73 (s, 2H, N=CH), 7.43 (s, 2H, Ar-H), 7.19 (d, 4H, Ar-H), 7.17–7.11 (m, 2H, Ar-H), 6.97 (d, 4H, Ar-H+ pyrrole-H), 6.55 (d, 2H, pyrrole-H), 6.31 (d, 2H, pyrrole-H), 4.92–4.80 (m, 2H, OCH), 3.13 (td, 2H, CH₂-pyridine), 3.02-2.93 (m, 2H, CH₂-pyridine), 2.83-2.69 (m, 2H, NCH₂), 2.56–2.46 (m, 2H, NCH₂), 1.22 (t, 6H, CH₃), 1.15 (d, 6H, CH₃). ¹³C NMR (101MHz, CDCl₃) δ 158.93, 139.65, 137.38, 136.46, 129.15, 128.35, 126.18, 113.66, 110.31, 79.87, 60.02, 38.03, 25.92, 25.79.

2. Crystallography data for complexes $\mathbf{1}$ and $\mathbf{3}$

2.1 Crystal data for 1 and 3

	1	3
Formula ^{<i>a</i>}	C ₂₈ H ₃₄ N ₆ O ₂ Ti	C ₃₀ H ₃₆ N ₄ O ₂ Ti
$M / \operatorname{g·mol}^{-1} a$	534.51	532.53
T/K	100(2)	100(2)
Crystal system	monoclinic	monoclinic
Space group	P21/c	P21/c
<i>a</i> / Å	10.2191(8)	10.268(2)
<i>b</i> / Å	11.4180(10)	11.468(3)
<i>c</i> / Å	24.491(2)	24.648(6)
α /°	90.00	90.00
eta /°	100.554(2)	100.635(4)
γ /°	90.00	90.00
$V/\text{\AA}^3$	2809.3(4)	2852.6(11)
Ζ	4	4
$ ho_{\rm c}/{ m g}{\cdot}{ m cm}^{-3}$	1.264	1.240
μ / mm^{-1}	0.340	0.332
<i>F</i> (000)	1128.0	1128.0
θ range/°	3.94 to 54.24°	3.36 to 50°
Measd/ independent	6183	5014
R _{int} reflections	0.0258	0.0538
obsd reflns $[I > 2\sigma (I)]$	6183/4/330	5014/24/338
GOF on F^2	1.026	1.109
R_1^{c}	0.0668	0.0894
$\mathrm{w}R_2^{d,e}$	0.1906	0.2362
$(\Delta \rho)_{\rm max,min}/{\rm e}\cdot{\rm \AA}^{-3}$	1.27/-1.17	1.29/-0.56

^{*a*} Including solvent molecules. ^{*b*} Mo K α radiation. ^{*c*} $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$ for observed reflections. ^{*d*} w=1/[$\sigma^2(F_o^2) + (\alpha P)^2 + bP$] and $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. ^{*e*} $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{1/2}$ for all data.

2.2 Bond	angles	and	distances	for	comp	lexes	1 and 3

1			
Ti(1)-O(2)	1.761(2)	Ti(1)-N(1)	2.106(2)
Ti(1)-O(1)	1.783(2)	Ti(1)-N(5)	2.255(2)
Ti(1)-N(4)	2.094(2)	Ti(1)-N(2)	2.293(2)
O(2)-Ti(1)-O(1)	101.42(10)	N(4)-Ti(1)-N(5)	74.38(9)
O(2)-Ti(1)-N(4)	95.06(10)	N(1)-Ti(1)-N(5)	86.43(8)
O(1)-Ti(1)-N(4)	101.54(9)	O(2)-Ti(1)-N(2)	91.38(9)
O(2)-Ti(1)-N(1)	100.58(9)	O(1)-Ti(1)-N(2)	164.15(9)
O(1)-Ti(1)-N(1)	94.27(9)	N(4)-Ti(1)-N(2)	86.44(8)
N(4)-Ti(1)-N(1)	155.09(9)	N(1)-Ti(1)-N(2)	74.00(8)
O(2)-Ti(1)-N(5)	165.49(9)	N(5)-Ti(1)-N(2)	78.25(8)
O(1)-Ti(1)-N(5)	90.61(9)		
3			
Ti(1)-O(2)	1.764(3)	Ti(1)-N(1)	2.109(4)
Ti(1)-O(1)	1.787(3)	Ti(1)-N(4)	2.264(4)
Ti(1)-N(3)	2.103(4)	$T_{1}^{2}(1) N(2)$	2,204(4)
		$\Pi(1) - \Pi(2)$	2.304(4)
O(2)-Ti(1)-O(1)	101.50(18)	N(3)-Ti(1)-N(4)	2.304(4) 74.27(14)
O(2)-Ti(1)-O(1) O(2)-Ti(1)-N(3)	101.50(18) 95.35(16)	N(3)-Ti(1)-N(4) N(1)-Ti(1)-N(4)	2.304(4) 74.27(14) 86.24(15)
O(2)-Ti(1)-O(1) O(2)-Ti(1)-N(3) O(1)-Ti(1)-N(3)	101.50(18) 95.35(16) 101.51(16)	N(3)-Ti(1)-N(4) N(1)-Ti(1)-N(4) O(2)-Ti(1)-N(2)	2.304(4) 74.27(14) 86.24(15) 91.37(16)
O(2)-Ti(1)-O(1) O(2)-Ti(1)-N(3) O(1)-Ti(1)-N(3) O(2)-Ti(1)-N(1)	101.50(18) 95.35(16) 101.51(16) 100.58(16)	N(3)-Ti(1)-N(4) N(1)-Ti(1)-N(4) O(2)-Ti(1)-N(2) O(1)-Ti(1)-N(2)	2.304(4) 74.27(14) 86.24(15) 91.37(16) 164.19(15)
O(2)-Ti(1)-O(1) O(2)-Ti(1)-N(3) O(1)-Ti(1)-N(3) O(2)-Ti(1)-N(1) O(1)-Ti(1)-N(1)	101.50(18) 95.35(16) 101.51(16) 100.58(16) 94.32(16)	N(3)-Ti(1)-N(4) N(1)-Ti(1)-N(4) O(2)-Ti(1)-N(2) O(1)-Ti(1)-N(2) N(3)-Ti(1)-N(2)	2.304(4) 74.27(14) 86.24(15) 91.37(16) 164.19(15) 86.21(14)
O(2)-Ti(1)-O(1) O(2)-Ti(1)-N(3) O(1)-Ti(1)-N(3) O(2)-Ti(1)-N(1) O(1)-Ti(1)-N(1) N(3)-Ti(1)-N(1)	101.50(18) 95.35(16) 101.51(16) 100.58(16) 94.32(16) 154.82(16)	N(3)-Ti(1)-N(4) N(1)-Ti(1)-N(4) O(2)-Ti(1)-N(2) O(1)-Ti(1)-N(2) N(3)-Ti(1)-N(2) N(1)-Ti(1)-N(2)	2.304(4) 74.27(14) 86.24(15) 91.37(16) 164.19(15) 86.21(14) 74.11(14)
O(2)-Ti(1)-O(1) O(2)-Ti(1)-N(3) O(1)-Ti(1)-N(3) O(2)-Ti(1)-N(1) O(1)-Ti(1)-N(1) N(3)-Ti(1)-N(1) O(2)-Ti(1)-N(4)	101.50(18) 95.35(16) 101.51(16) 100.58(16) 94.32(16) 154.82(16) 165.64(16)	N(3)-Ti(1)-N(4) N(1)-Ti(1)-N(4) O(2)-Ti(1)-N(2) O(1)-Ti(1)-N(2) N(3)-Ti(1)-N(2) N(1)-Ti(1)-N(2) N(4)-Ti(1)-N(2)	2.304(4) 74.27(14) 86.24(15) 91.37(16) 164.19(15) 86.21(14) 74.11(14) 78.26(14)

Table S2Selected bond lengths (Å) and angles (°) for 1 and 3