Influence of nanostructured ceria support on platinum nanoparticles for methanol electrooxidation in alkaline media

Yunyun Zhou,^{*a*} Christian L. Menéndez,^{*b*} Maxime J.-F. Guinel,^{*b*, *c*} Elizabeth C. Needels,^{*a*} Ileana González-González,^{*b*} Dichele L. Jackson,^{*a*} Neil J. Lawrence,^{*a*} Carlos R. Cabrera^{*b*,*} and Chin Li Cheung^{*a*,*}

^a Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

^b Department of Chemistry and NASA-URC Center for Advanced Nanoscale Materials, University of Puerto Rico, San Juan, Puerto Rico 00936-8377, USA.

^{*c*} Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377, USA.

*Corresponding authors; e-mails: ccheung2@unl.edu; carlos.cabrera2@upr.edu

Electronic Supplemental Information

Fig. S1 Cyclic voltammetry of (b) Pt/ceria NRs and (b) Pt/ceria NPs catalysts in 0.50 M KOH at 50 mV/s. The hydrogen adsorption and Pt oxidation and PtOH reduction are identified.

The Pt active surface area was determined by determining the charge in the hydrogen adsorption potential region.^{1, 2} Fig. S1 shows the typical CV curves of Pt/ceria in KOH solution. As it is well-known that ceria is not electroactive, peaks between -800 mV and -600 mV vs. Ag/AgCl are attributed to hydrogen adsorption. The large peak at -300 mV vs. Ag/AgCl on the cathodic scan is due to the reduction of Pt-OH and PtO_x to Pt⁰. The peaks on the anodic scan are due to the formation of Pt hydroxide or oxides species from Pt^{0,3,4} Typical active Pt surface areas of Pt/ceria NPs catalyst deposited on the glassy carbon (GC) electrodes were about 0.017 cm² and that for the Pt/ceria NRs were about 0.0037 cm². Pt/ceria NPs exhibited 4 times more active Pt surface area than that of Pt/ceria NRs, which enabled Pt/ceria NPs to provide more active Pt sites to oxidize methanol in the solution and hence display higher catalytic current density per Pt loading.

Peak	Binding Energy (eV)	FWHM (eV)
$Pt^{0}(4f_{7/2})$	71.1	2.2
Pt-O-M (4f _{7/2})	71.7	0.6
$Pt^{2+}(4f_{7/2})$	72.8	1.7
$Pt^{4+}(4f_{7/2})$	73.6	1.5
$Pt^{0}(4f_{5/2})$	74.6	1.7
Pt-O-M (4f _{5/2})	75.4	0.6
$Pt^{2+}(4f_{5/2})$	76.1	1.4
$Pt^{4+}(4f_{5/2})$	77.1	1.3

 Table S1
 The fitting parameters for Pt 4f XPS data of Pt/ceria NRs.

Table S2 The fitting parameters for Pt 4f XPS data of Pt/ceria NPs.

Peak	Binding Energy (eV)	FWHM (eV)
$Pt^{0}(4f_{7/2})$	70.6	2.4
Pt-O-M (4f _{7/2})	71.9	0.4
$Pt^{2+}(4f_{7/2})$	72.7	2.1
$Pt^{0}(4f_{5/2})$	74.1	2.0
Pt-O-M (4f _{5/2})	75.0	0.5
$Pt^{2+}(4f_{5/2})$	75.2	2.8

References

- 1. J. M. D. Rodriguez, J. A. H. Melian and J. P. Pena, J. Chem. Educ., 2000, 77, 1195-1197.
- 2. F. G. Will, J. Electrochem. Soc., 1965, 112, 451-455.
- 3. S. Basu, ed., Recent Trends in Fuel Cell Science and Technology, Springer & Anamaya, 2007.
- 4. L. M. Pan, Z. Y. Zhou, D. J. Chen and S. G. Sun, Acta Phys-Chim Sin., 2008, 24, 1739-1744.