One pot four component approach for the construction of dihydropyridines and dihydropyridinones using amines and activated alkynes

Selvarangam.E.Kiruthika and Paramasivan.T.Perumal Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020

Supplementary data			
Conter	nts	Page No.	
1.	Typical procedure and Spectral data from vompounds	3	
2.	¹ H NMR spectrum of compound 5a	10	
3.	¹³ C NMR spectrum of compound 5a	10	
4.	¹ H NMR spectrum of compound 5b	11	
5.	¹³ C NMR spectrum of compound 5b	11	
6.	¹ H NMR spectrum of compound 5c	12	
7.	¹³ C NMR spectrum of compound 5 c	12	
8.	¹ H NMR spectrum of compound 5d	13	
9.	¹³ C NMR spectrum of compound 5d	13	
10.	¹ H NMR spectrum of compound 5 e	14	
11.	¹³ C NMR spectrum of compound 5 e	14	
12.	¹ H NMR spectrum of compound 5 f	15	
13.	¹³ C NMR spectrum of compound 5 f	15	
14.	¹ H NMR spectrum of compound 5 g	16	
15.	¹³ C NMR spectrum of compound 5 g	16	
16.	¹ H NMR spectrum of compound 5h	17	
17.	¹³ C NMR spectrum of compound 5h	17	
18.	¹ H NMR spectrum of compound 5 i	18	
19.	¹³ C NMR spectrum of compound 5 i	18	
20.	¹ H NMR spectrum of compound 5 j	19	
21.	¹³ C NMR spectrum of compound 5 j	19	
22.	¹ H NMR spectrum of compound 5 k	20	
23.	¹³ C NMR spectrum of compound 5 k	20	

24.	¹ H NMR spectrum of compound 5 l	21
25.	¹³ C NMR spectrum of compound 5 l	21
26.	¹ H NMR spectrum of compound 5m	22
27.	¹³ C NMR spectrum of compound 5m	22
28.	¹ H NMR spectrum of compound 5n	23
29.	¹³ C NMR spectrum of compound 5n	23
30.	¹ H NMR spectrum of compound 50	24
31.	¹³ C NMR spectrum of compound 50	24
32.	¹ H NMR spectrum of compound 13a	25
33.	¹³ C NMR spectrum of compound 13a	25
34.	¹ H NMR spectrum of compound 13b	26
35.	¹³ C NMR spectrum of compound 13b	26
36.	¹ H NMR spectrum of compound 13c	27
37.	¹³ C NMR spectrum of compound 13c	27
38.	¹ H NMR spectrum of compound 13d	28
39.	¹³ C NMR spectrum of compound 13d	28
40.	¹ H NMR spectrum of compound 13e	29
41.	¹³ C NMR spectrum of compound 13e	29
42.	¹ H NMR spectrum of compound 13f	30
43.	¹³ C NMR spectrum of compound 13f	30
44.	HSQC spectrum of 5a	31
45.	HMBC spectrum of 5a	31
46.	UV absorption spectrum of 5a	32
47.	Emission Spectrum of 5a	32
48.	UV absorption Spectrum of 13a	33
49.	Emission spectrum of 13a	33
50.	Correlation Data figure for compound 5a	34

Typical procedure for the synthesis of dihydropyridines (5a-o)

To a mixture of 2-hydroxy aldehyde **1** (1 mmol), malononitrile **2a** (1 mmol), aromatic amine **3** (1 mmol) and L-Proline (10 mol %) was syringed out alkyne **4** (1 mmol). The reaction mixture was stirred vigorously at room temperature till the completion of the reaction as monitored by TLC. The product was isolated by flash chromatographic purification using 2:3 EtOAc/Hexane.

Spectral data for the synthesized compounds

Dimethyl 6-amino-5-cyano-1,4-dihydro-4-(2-hydroxyphenyl)-1*m***-tolylpyridine-2,3-dicarboxylate (5a).** White solid. Yield: 84%. R_f: 0.25 (2:3 EtOAc/Hexane). mp: 190-192°C. IR (KBr): 3480, 3319, 2962, 2199, 1759, 1730, 1430, 1289, 1118, 729, 523 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆/ TMS): $\delta = 2.34$ (s, 3H), 3.34 (s, 3H), 3.48 (s, 3H),

4.75 (s, 1H), 5.36 (s, 2H, -NH₂), 6.80 (t, J = 8.6 Hz, 2H), 7.04-7.12 (m, 4H), 7.30 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 9.61 (s, 1H, -OH). ¹³C NMR (100 MHz, DMSO-d₆/TMS): $\delta = 20.8$, 33.6, 51.8, 52.3, 59.2, 103.4, 115.7, 119.1, 121.4, 127.2, 127.9, 128.5, 129.3, 130.5, 130.7, 131.1, 135.7, 139.2, 142.6, 151.3, 155.1, 163.4, 165.5 Elemental Analyses for C₂₃H₂₁N₃O₅, Calc: C, 65.86; H, 5.05; N, 10.02. Found: C, 65.88; H, 5.04; N, 10.01. MS (ESI): m/z 420.5 [M+H]⁺.

Dimethyl 6-amino-4-(3,5-dichloro-2-hydroxyphenyl)-5-cyano-1,4dihydro-1-*m***-tolylpyridine-2,3-dicarboxylate** (5b) White solid. Yield: 80%. R_f: 0.25 (2:3 EtOAc/Hexane). mp: 187-189°C. IR (KBr): 3452, 3323, 2955, 2186, 1744, 1726, 1454, 1440, 1247, 1122, 703, 626 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/ TMS): $\delta = 2.34$ (s, 3H),

3.30 (s, 3H), 3.74 (s, 3H), 4.88 (s, 1H), 5.56 (s, 2H, -NH₂), 7.08-7.12 (m, 3H), 7.32 (d, J = 7.5 Hz, 1H), 7.37-7.42 (m, 2H), 9.50 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 20.8$, 32.3, 51.0, 53.2, 58.0, 102.6, 107.5, 113.9, 120.8, 121.8, 123.0, 126.9, 127.1, 127.5, 129.3, 130.6, 135.2, 135.6, 139.2, 143.0, 151.6, 163.0, 165.0. Elemental Analyses for C₂₃H₁₉Cl₂N₃O₅ Calc: C, 56.57; H, 3.92; N, 8.61. Found: C, 56.60; H, 3.90; N, 8.60. MS (ESI): m/z 488.4 [M+H]⁺.

Dimethyl 6-amino-1-(4-bromophenyl)-5-cyano-1,4-dihydro-4-(2-hydroxyphenyl)pyridine-2,3-dicarboxylate (5c). White solid. Yield: 79%. R_f: 0.25 (2:3 EtOAc/Hexane). mp: 194-196°C. IR (KBr): 3461, 3350, 2950, 2181, 1744, 1707, 1648, 1569, 1412, 1353, 1228, 1118,

1012, 759, 722, 528 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/ TMS): δ = 3.38 (s, 3H), 3.48 (s, 3H), 4.73 (s, 1H), 5.53 (s, 2H, -NH₂), 6.76-6.80 (m, 2H), 7.05-7.08 (m, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 9.60 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): δ = 33.8, 51.8, 52.4, 59.2, 103.6, 115.7, 119.0, 121.2, 123.2, 127.9, 128.5, 130.9, 132.5, 132.6, 135.2, 142.2, 151.2, 155.1, 163.3, 165.4. Elemental Analyses for C₂₂H₁₈BrN₃O₅ Calc: C, 54.56; H, 3.75; N, 8.68. Found: C, 54.58; H, 3.74; N, 8.67. MS (ESI): m/z 484.7[M+H]⁺.

Dimethyl 6-amino-1-(4-bromophenyl)-5-cyano-4-(3-ethoxy-2-hydroxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5d). White solid. Yield: 77%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 180-182°C. IR (KBr): 3489, 3397, 2962, 2156, 1750, 1723, 1689, 1577, 1465, 1333, 1298, 1110, 1023, 789, 603 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/

TMS): $\delta = 1.39$ (t, J = 7 Hz, 3H), 3.36 (s, 3H), 3.47 (s, 3H), 4.04 (q, J = 7 Hz, 2H), 4.74 (s, 1H), 5.46 (s, 2H, -NH₂), 6.69-6.73 (m, 2H), 6.79-6.81 (m, 1H), 7.31 (d, J = 8.5 Hz, 2H), 7.67 (d, J = 8.5 Hz, 2H), 8.48 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 14.7$, 34.0, 51.7, 52.3, 58.9, 63.9, 103.4, 111.0, 118.5, 120.5, 121.2, 123.2, 131.0, 132.4, 132.7, 135.1, 142.0, 144.3, 146.6, 151.1, 163.2, 165.4. Elemental Analyses for C₂₄H₂₂BrN₃O₆ Calc: C, 54.56; H, 4.20; N, 7.95. Found: C, 54.58; H, 4.19; N, 7.94. MS (ESI): m/z 528.2[M+H]⁺.

Dimethyl 6-amino-4-(5-bromo-2-hydroxyphenyl)-5-cyano-1,4dihydro-1-(4-methoxyphenyl)pyridine-2,3-dicarboxylate (5e). White solid. Yield: 82%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 196-198°C. IR (KBr): 3487, 3369, 2982, 2156, 1754, 1710, 1621, 1522, 1423, 1300, 1298, 1150, 1069, 700, 689 cm⁻¹. ¹H NMR (500 MHz,

DMSO-d₆/ TMS): $\delta = 3.37$ (s, 3H), 3.50 (s, 3H), 3.79 (s, 3H), 4.71 (s, 1H), 5.45 (s, 2H, -NH₂), 6.79 (d, J = 7.5 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 7.18-7.23 (m, 4H), 9.98 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 33.8$, 51.8, 52.3, 55.5, 58.2, 102.4, 109.9, 114.7, 117.9, 121.1, 127.8, 130.4, 130.8, 131.3, 133.6, 143.2, 151.8, 154.5, 159.9, 163.1, 165.2. Elemental Analyses for C₂₃H₂₀BrN₃O₆ Calc: C, 53.71; H, 3.92; N, 8.17. Found: C, 53.69; H, 3.93; N, 8.18. MS (ESI): m/z 514.6 [M+H]⁺.

Dimethyl 6-amino-5-cyano-1,4-dihydro-4-(2-hydroxy-4methoxyphenyl)-1-*m*-tolylpyridine-2,3-dicarboxylate (5f). White solid, Yield: 83%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 185-187°C. IR (KBr): 3452, 3321, 2920, 2177, 1752, 1736, 1655, 1566, 1499, 1326, 1256, 1122, 1000, 780, 600 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/

TMS): $\delta = 2.34$ (s, 3H), 3.33 (s, 3H), 3.48 (s, 3H), 3.68 (s, 3H), 4.66 (s, 1H), 5.29 (s, 2H, -NH₂), 6.37-6.40 (m, 2H), 6.99 (d, J = 8.5 Hz, 1H), 7.07-7.11 (m, 2H), 7.29 (d, J = 7.5 Hz, 1H), 7.35 (t, J = 8 Hz, 1H), 9.61 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): δ 20.7, 33.0, 51.7, 52.1, 54.9, 59.6, 101.5, 103.5, 104.3, 121.3, 123.9, 127.1, 129.1, 129.2, 130.4, 130.6, 135.7, 139.1, 142.2, 151.0, 155.9, 159.0, 163.3, 165.5. Elemental Analyses for C₂₄H₂₃N₃O₆ Calc: C, 64.13; H, 5.16; N, 9.35. Found: C, 64.10; H, 5.18; N, 9.36. MS (ESI): m/z 450.2[M+H]⁺.

Dimethyl 6-amino-4-(5-bromo-2-hydroxyphenyl)-5-cyano-1,4dihydro-1-*m*-tolylpyridine-2,3-dicarboxylate (5g). White solid. Yield: 78%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 195-197°C. IR (KBr): 3444, 3354, 2945, 2192, 1736, 1725, 1645, 1582, 1423, 1326, 1262, 1178, 1022, 783, 700, 623 cm⁻¹. ¹H NMR (400 MHz, CDCl₃/ TMS): δ = 2.32 (s, 3H), 3.34 (s, 3H), 3.48 (s, 3H), 4.70 (s, 1H), 5.42 (s, 2H, -NH₂), 6.80 (d, J = 8.4 Hz, 1H), 7.04-7.06 (m, 2H), 7.19-7.23 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 8 Hz, 1H), 10.16 (s, 1H, -OH) . ¹³C NMR (100 MHz, DMSO-d₆/TMS): δ21.2, 34.1, 52.3, 52.8, 58.8, 103.4, 110.4, 118.3, 121.5, 127.3, 129.8, 130.7, 130.9, 131.1, 133.8, 135.8, 139.9, 143.3, 152.1, 154.9, 163.6, 165.6. Elemental Analyses for C₂₃H₂₀BrN₃O₅ Calc: C, 55.43; H, 4.05; N, 8.43. Found: C, 55.45; H, 4.04; N, 8.42. MS (ESI): m/z 498.2[M+H]⁺.

Dimethyl 6-amino-5-cyano-4-(3-ethoxy-2-hydroxyphenyl)-1,4dihydro-1-*m*-tolylpyridine-2,3-dicarboxylate (5h). White solid. Yield: 81%. R_f: 0.25 (2:3 EtOAc/Hexane). mp: 199-201°C. IR (KBr): 3435, 3368, 2900, 2187, 1745, 1720, 1645, 1500, 1423, 1369, 1209, 1153, 1000, 789, 721, 598 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/ TMS): δ =

1.38 (t, J = 7 Hz, 3H), 2.34 (s, 3H), 3.33 (s, 3H), 3.47 (s, 3H), 4.04 (q, J=7 Hz, 2H), 4.80 (s, 1H), 5.33 (s, 2H, -NH₂), 6.72-6.76 (m, 2H), 6.81-6.83 (m, 1H), 7.13-7.16 (m, 2H), 7.30 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 8.50 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 14.7$, 20.7, 33.3, 51.7, 52.2, 59.1, 63.9, 103.2, 111.0, 118.6, 120.2, 121.2, 127.2, 129.2, 130.4, 130.7, 131.4, 135.5, 139.1, 142.4, 144.0, 146.6, 151.2, 163.2, 165.4. Elemental Analyses for C₂₅H₂₅N₃O₆ Calc: C, 64.79; H, 5.44; N, 9.07. Found: C, 67.80; H, 5.42; N, 9.08. MS (ESI): m/z 464.7 [M+H]⁺.

Dimethyl 6-amino-5-cyano-1,4-dihydro-4-(2-hydroxy-4methoxyphenyl)-1-(4-methoxyphenyl)pyridine-2,3-dicarboxylate (5i). White solid. Yield: 85%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 203-205°C. IR (KBr): 3475, 3323, 2967, 2163, 1740, 1709, 1680, 1575, 1443, 1329, 1220, 1175, 1036, 726, 712, 589 cm⁻¹. ¹H NMR

(500 MHz, DMSO-d₆/ TMS): $\delta = 3.35$ (s, 3H), 3.48 (s, 3H), 3.68 (s, 3H), 3.79 (s, 3H), 4.65 (s, 1H), 5.29 (s, 2H, -NH₂), 6.36-6.39 (m, 2H), 6.97-7.02 (m, 3H), 7.20 (d, J = 9 Hz, 2H), 9.61 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 32.8$, 51.7, 52.2, 54.9, 55.5, 59.3, 101.5, 103.2, 104.3, 108.7, 114.6, 121.4, 124.0, 128.0, 129.0, 131.5, 142.6, 151.3, 155.8, 159.0, 159.8, 163.4, 165.5. Elemental Analyses for C₂₄H₂₃N₃O₇ Calc: C, 61.93; H, 4.98; N, 9.03. Found: C, 61.95; H, 4.97; N, 9.02. MS (ESI): m/z 466.3 [M+H]⁺.

Diethyl 6-amino-4-(3,5-dichloro-2-hydroxyphenyl)-5-cyano-1,4dihydro-1-phenylpyridine-2,3-dicarboxylate (5j). White solid. Yield: 84%. R_f: 0.25 (2:3 EtOAc/Hexane). mp: 210-212°C. IR (KBr): 3422, 3356, 2989, 2178, 1750, 1725, 1667, 1422, 1369, 1232, 1156, 1023, 777, 712, 533 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/ TMS): $\delta = 0.82$ (t, J = 7

Hz, 3H), 1.01 (t, J = 7 Hz, 3H), 3.72-3.79 (m, 2H), 3.91-3.94 (m, 2H), 4.87 (s, 1H), 5.50 (s, 2H, -NH₂), 7.11 (d, J = 3 Hz, 1H), 7.36-7.37 (m, 2H), 7.41 (d, J = 3 Hz, 1H), 7.50-7.51 (m, 3H), 9.79 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 13.1$, 13.6, 34.8, 57.8, 60.4, 61.4, 102.4, 120.9, 121.7, 122.9, 127.4, 127.6, 129.5, 130.0, 130.7, 135.3, 135.7, 142.8, 149.9, 151.5, 162.3, 164.5. Elemental Analyses for C₂₄H₂₁Cl₂N₃O₅ Calc: C, 57.38; H, 4.21; N, 8.36. Found: C, 57.36; H, 4.22; N, 8.37. MS (ESI): m/z 502.6 [M+H]⁺.

Diethyl 6-amino-4-(5-bromo-2-hydroxyphenyl)-1-(4-bromophenyl)-5-cyano-1,4-dihydropyridine-2,3-dicarboxylate (5k). White solid. Yield: 79%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 207-209°C. IR (KBr): 3452, 3350, 2981, 2150, 1770, 1704, 1669, 1584, 1421, 1335, 1282, 1181, 1025, 795, 719, 582 cm⁻¹. ¹H NMR (500

MHz, DMSO-d₆/ TMS): $\delta = 0.88$ (t, J = 7 Hz, 3H), 1.03 (t, J = 7 Hz, 3H), 3.74-3.96 (m, 2H), 4.00-4.22 (m, 2H), 4.66 (s, 1H), 5.60 (s, 2H, -NH₂), 6.78 (d, J = 8.5 Hz, 1H), 7.19-7.24 (m, 4H), 7.71 (d, J = 8.5 Hz, 2H), 9.99 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 13.2$, 13.7, 35.0, 59.8, 60.3, 61.4, 102.7, 109.8, 117.9, 121.1, 123.3, 130.4, 131.6, 132.5, 132.7, 133.2, 135.0, 142.3, 151.4, 155.0, 162.5, 164.6. Elemental Analyses for C₂₄H₂₁Br₂N₃O₅ Calc: C, 48.75; H, 3.58; N, 7.11. Found: C, 48.77; H, 3.57; N, 7.10. MS (ESI): m/z 589.7 [M+H]⁺.

Diethyl 6-amino-5-cyano-4-(3-ethoxy-2-hydroxyphenyl)-1,4-dihydro-1-*m***-tolylpyridine-2,3-dicarboxylate (5l).** White solid. Yield: 80%. R_f: 0.20 (2:3 EtOAc/Hexane). mp: 198-200°C. IR (KBr): 3400, 3310, 2982, 2118, 1777, 1713, 1645, 1567, 1408, 1362, 1229, 1110, 1011, 795, 710, 545 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/ TMS): $\delta = 0.83$ (t, J = 7 Hz,

3H), 1.01 (t, J = 7 Hz, 3H), 1.38 (t, J = 7 Hz, 3H), 2.34 (s, 3H), 3.72-3.83 (m, 2H), 3.90 (q, J = 7 Hz, 2H), 4.04 (q, J = 7 Hz, 2H), 4.80 (s, 1H), 5.30 (s, 2H, -NH₂), 6.74-6.76 (m, 2H), 6.81-6.83 (m, 1H), 7.17 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 1H), 7.37 (t, J = 8.5 Hz, 1H), 8.48 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 13.2$, 13.7, 14.7, 20.7, 33.6, 58.9, 60.1, 61.1, 64.0, 103.3, 111.1, 113.5, 120.6, 121.3, 127.6, 129.2, 130.4, 131.1, 131.5, 135.5, 139.1, 142.2, 144.2, 146.5, 151.2, 162.7, 164.9. Elemental Analyses for C₂₇H₂₉N₃O₆ Calc: C, 65.97; H, 5.95; N, 8.55. Found: C, 65.99; H, 5.94; N, 8.54. MS (ESI): m/z 492.8 [M+H]⁺.

Diethyl 6-amino-5-cyano-1,4-dihydro-4-(2-hydroxy-4methoxyphenyl)-1-(4-methoxyphenyl)pyridine-2,3-dicarboxylate (5m). white solid. Yield: 81%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 183-185°C. IR (KBr): 3444, 3326, 2987, 2120, 1725, 1702, 1654, 1523, 1469, 1355, 1230, 1110, 1026, 770, 759, 530 cm⁻¹. ¹H NMR

(500 MHz, DMSO-d₆/ TMS): $\delta = 0.86$ (t, J = 7 Hz, 3H), 1.03 (t, J = 7 Hz, 3H), 3.68 (s, 3H), 3.72-3.84 (m, 5H), 3.86-3.92 (m, 2H), 4.65 (s, 1H), 5.27 (s, 2H, -NH₂), 6.36-6.41 (m, 2H), 7.00 (t, J = 8.5 Hz, 3H), 7.22 (d, J = 8.5 Hz, 2H), 9.59 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 13.3$, 13.8, 33.1, 54.9, 55.5, 59.1, 60.1, 61.1, 100.2, 101.4, 103.3, 104.2, 114.5, 121.5, 124.2, 128.0, 129.4, 131.8, 142.4, 151.4, 155.9, 159.0, 159.9, 162.9, 164.9. Elemental Analyses for C₂₆H₂₇N₃O₇ Calc: C, 63.28; H, 5.51; N, 8.51. Found: C, 63.29; H, 5.49; N, 8.52. MS (ESI): m/z 494.3 [M+H]⁺.

Diethyl 6-amino-4-(5-bromo-2-hydroxyphenyl)-5-cyano-1,4dihydro-1-m-tolylpyridine-2,3-dicarboxylate (5n). White solid. Yield: 84%. R_f: 0.25 (2:3 EtOAc/Hexane). mp: 206-208°C. IR (KBr): 3420, 3318, 2999, 2164, 1755, 1729, 1697, 1568, 1473, 1333, 1215, 1148, 1098, 795, 726, 569 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/ TMS): $\delta = 0.84$ (t, J = 7 Hz, 3H), 1.04 (t, J = 7 Hz, 3H), 2.34 (s, 3H), 3.75-3.83 (m, 2H), 3.93 (q, J = 7 Hz, 2H), 4.70 (s, 1H), 5.44 (s, 2H, -NH₂), 6.79-6.81 (m, 1H), 7.09-7.11 (m, 2H), 7.22-7.23 (m, 2H), 7.31 (d, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 9.98 (s, 1H, -OH). ¹³C NMR (125 MHz, CDCl₃/TMS): $\delta = 13.3$, 13.7, 21.1, 32.7, 60.0, 61.7, 61.9, 104.0, 112.6, 119.2, 120.6, 127.1, 129.6, 130.7, 131.1, 131.2, 131.7, 133.2, 134.7, 140.3, 142.2, 151.2, 152.9, 162.7, 166.4. Elemental Analyses for C₂₅H₂₄BrN₃O₅ Calc: C, 57.04; H, 4.60; N, 7.98. Found: C, 57.03; H, 4.62; N, 7.97. MS (ESI): m/z 526.6 [M+H]⁺.

Dimethyl 6-amino-4-(5-bromo-2-hydroxyphenyl)-1-(4bromophenyl)-5-cyano-1,4-dihydropyridine-2,3-dicarboxylate

(50). White solid. Yield: 82%. R_f : 0.25 (2:3 EtOAc/Hexane). mp: 214-216°C. IR (KBr): 3488, 3334, 2927, 2146, 1753, 1705, 1666, 1509, 1463, 1325, 1227, 1180, 1000, 780, 726, 690 cm⁻¹. ¹H NMR

(500 MHz, DMSO-d₆/ TMS): $\delta = 3.38$ (s, 3H), 3.49 (s, 3H), 4.67 (s, 1H), 5.65 (s, 2H, -NH₂), 6.78 (d, J = 8.5 Hz, 1H),7.16-7.31 (m, 4H), 7.71 (d, J = 8.5 Hz, 2H), 10.03 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 34.3$, 51.9, 52.5, 58.3, 102.9, 109.9, 118.0, 121.0, 123.3, 130.5, 131.0, 132.3, 132.6, 133.3, 135.1, 142.5, 151.4, 154.7, 163.1, 165.1. Elemental Analyses for C₂₂H₁₇Br₂N₃O₅ Calc: C, 46.92; H, 3.04; N, 7.46. Found: C, 46.90; H, 3.05; N, 7.47. MS (ESI): m/z 561.2 [M+H]⁺.

Typical procedure for the synthesis of dihydropyridinones (13a-f)²²

To a mixture of dihydropyridine 5 (1 mmol), 1N hydrochloric acid (1-2mL) was added and the reaction mixture was stirred under reflux at 75^{0} C for 30 minutes. The resultant solid was filtered off and recrystallized from methanol to afford the dihydropyridinones 13a-f.

(4S,5R)-Dimethyl-5-cyano-1,4,5,6-tetrahydro-4-(2-

hydroxyphenyl)-6-oxo-1-*m*-tolylpyridine-2,3-dicarboxylate (13a). Yellow solid. Yield: 85%. R_f : 0.30 (2:3 EtOAc/Hexane). mp: 238-240°C. IR (KBr): 3330, 2986, 2187, 1740, 1723, 1699, 1563, 1428, 1364, 1296, 1122, 1065, 1036, 999, 710 cm⁻¹. ¹H NMR (500 MHz,

DMSO-d₆/ TMS): $\delta = 2.34$ (s, 3H), 3.34 (s, 3H), 3.56 (s, 3H), 4.71 (d, J = 9 Hz, 1H), 5.30 (d, J = 8.5 Hz, 1H), 6.81-6.87 (m, 2H), 6.99-7.10 (m, 2H), 7.14-7.20 (m, 2H), 7.26 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 10.20 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 20.7$, 35.7, 52.2, 52.3, 115.3, 115.4, 119.2, 128.7, 129.4, 129.6, 129.9, 136.0 138.5, 142.9, 155.9, 162.3, 162.4, 164.6. Elemental Analyses for C₂₃H₂₀N₂O₆ Calc: C, 65.71; H, 4.79; N, 6.66. Found: C, 65.73; H, 4.78; N, 6.65. MS (ESI): m/z 421.2 [M+H]⁺.

(4S,5R)-Diethyl 5-cyano-1,4,5,6-tetrahydro-4-(2-hydroxy-4-methoxyphenyl)-1-(4-methoxyphenyl)-6-oxopyridine-2,3-dicarboxylate (13b). Yellow solid. Yield: 83%. R_f: 0.30 (2:3

EtOAc/Hexane)., mp: 226-228°C. IR (KBr): 3392, 2950, 2181, 1739, 1707, 1620, 1514, 1436, 1325, 1233, 1104, 1063, 1035, 957, 708 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/ TMS): $\delta = 0.85$ (t, J = 7 Hz, 3H), 1.10 (t, J = 7 Hz, 3H), 3.69 (s, 3H), 3.77 (s, 3H), 3.79-3.90 (m, 2H), 3.97-4.01 (m, 2H), 4.61 (d, J = 9 Hz, 1H), 5.25 (d, J = 9.5 Hz, 1H), 6.40-6.44 (m, 2H), 6.99-7.01 (m, 2H), 7.08-7.28 (m, 3H), 10.23 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 13.2$, 13.8, 36.3, 54.9, 55.5, 60.7, 61.4, 101.1, 104.5, 105.5, 113.9, 114.0, 115.5, 115.7, 128.5, 130.7, 142.8, 156.8, 159.5, 160.0, 161.8, 162.7, 164.1 Elemental Analyses for C₂₆H₂₆N₂O₈ Calc: C, 63.15; H, 5.30; N, 5.67. Found: C, 63.17; H, 5.29; N, 5.66; MS (ESI): m/z 495.7 [M+H]⁺.

(4S,5R)-Dimethyl 1-(4-bromophenyl)-5-cyano-1,4,5,6-tetrahydro-4-(2-hydroxyphenyl)-6-oxopyridine-2,3-dicarboxylate (13c). Yellow solid. Yield: 80%. R_f: 0.35 (2:3 EtOAc/Hexane). mp: 221-223°C. IR (KBr): 3398, 2956, 2119, 1740, 1726, 1632, 1523, 1467, 1364, 1264, 1102, 1066, 1034, 980, 710 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/

TMS): $\delta = 3.38$ (s, 3H), 3.57 (s, 3H), 4.70 (d, J = 9 Hz, 1H), 5.29 (d, J = 8.5 Hz, 1H), 6.80-6.86 (m, 2H), 7.14-7.20 (m, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 10.22 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta =$ 21.1, 37.4, 52.2, 52.6, 105.9, 115.2, 115.5, 119.2, 122.5, 123.0, 129.4, 130.8, 132.1, 135.5, 142.2, 155.9, 162.2, 162.4, 164.6. Elemental Analyses for C₂₂H₁₇BrN₂O₆ Calc: C, 54.45; H, 3.53; N, 5.77. Found: C, 54.43; H, 3.54; N, 5.78. MS (ESI): m/z 485.3 [M+H]⁺.

(4S,5R)-Dimethyl4-(5-bromo-2-hydroxyphenyl)-1-(4-
bromophenyl)-5-cyano-1,4,5,6-tetrahydro-6-oxopyridine-2,3-
dicarboxylate (13d). Yellow solid. Yield: 79%. R_f: 0.30 (2:3
EtOAc/Hexane). mp: 242-244°C. IR (KBr): 3375, 2963, 2177, 1734,
1710, 1648, 1523, 1419, 1329, 1230, 1110, 1000, 723 cm⁻¹. ¹H NMR

(500 MHz, DMSO-d₆/ TMS): δ = 3.38 (s, 3H), 3.59 (s, 3H), 4.66 (d, *J* = 9 Hz, 1H), 5.30 (d, *J* = 8.5 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 7.18-7.20 (m, 2H), 7.32-7.36 (m, 2H), 7.72 (d, *J* = 9 Hz, 2H), 10.69 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): δ = 37.7, 52.4, 52.7, 104.9, 109.8, 115.2, 117.6, 122.7, 125.8, 130.7, 132.0, 132.2, 133.7, 135.4, 142.5, 155.5, 162.2, 162.4, 164.5. Elemental Analyses for C₂₂H₁₆Br₂N₂O₆ Calc: C, 46.84; H, 2.86; N, 4.97. Found: C, 46.86; H, 2.85; N, 4.96. MS (ESI): m/z 562.7 [M+H]⁺.

(4S,5R)-Dimethyl5-cyano-4-(3-ethoxy-2-hydroxyphenyl)-1,4,5,6-
tetrahydro-6-oxo-1-m-tolylpyridine-2,3-dicarboxylate(13e).Yellow solid. Yield:82%. R_f :0.30(2:3 EtOAc/Hexane).mp: 237-239°C. IR(KBr):3359,2945,2180,1778,1745,1636,1523,1438,1331,1213,1156,1019,960,700 cm⁻¹.¹H NMR (500 MHz, DMSO-

d₆/ TMS): δ = 1.38 (t, *J* = 7 Hz, 3H), 2.35 (s, 3H), 3.34 (s, 3H), 3.55 (s, 3H), 4.05 (q, *J* = 7 Hz, 2H), 4.82 (d, *J* = 8.5 Hz, 1H), 5.33 (d, *J* = 8.5 Hz, 1H), 6.77-6.82 (m, 3H), 6.90-6.92 (m, 1H), 7.03-7.07 (m, 1H), 7.26 (d, *J* = 7.5 Hz, 1H), 7.34-7.37 (m, 1H), 9.15 (s, 1H, -OH). ¹³C NMR (125 MHz, DMSO-d₆/TMS): δ = 14.7, 20.8, 35.4, 52.2, 52.4, 64.0, 112.4, 115.3, 119.1,

123.3, 128.7, 129.9, 136.0, 138.5, 143.0, 145.1, 146.7, 162.2, 162.3, 164.7. Elemental Analyses for $C_{25}H_{24}N_2O_7$ Calc: C, 64.65; H, 5.21; N, 6.03. Found: C, 64.67; H, 5.20; N, 6.02. MS (ESI): m/z 465.3 $[M+H]^+$.

(4S,5R)-Dimethyl 1-(4-bromophenyl)-5-cyano-4-(3-ethoxy-2hydroxyphenyl)-1,4,5,6-tetrahydro-6-oxopyridine-2,3-dicarboxylate (13f). Yellow solid. Yield: 77%. R_f: 0.30 (2:3 EtOAc/Hexane). mp: 230-232°C. IR (KBr): 3398, 2963, 2196, 1703, 1710, 1623, 1553, 1469, 1300, 1296, 1167, 1100, 1019, 946, 723 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆/

TMS): $\delta = 1.38$ (t, J = 7 Hz, 3H), 3.37 (s, 3H), 3.56 (s, 3H), 4.05 (q, J = 7 Hz, 2H), 4.75 (d, J = 8.5 Hz, 1H), 5.29 (d, J = 8.5 Hz, 1H), 6.73-6.80 (m, 2H), 6.90-6.92 (m, 1H), 7.21-7.47 (m, 2H), 7.68 (d, J = 8 Hz, 2H), 9.16 (s, 1H, -OH) . ¹³C NMR (125 MHz, DMSO-d₆/TMS): $\delta = 14.7$, 36.8, 52.2, 52.6, 63.9, 105.8, 112.3, 115.1, 118.9, 121.9, 122.6, 123.2, 131.7, 132.0, 135.4, 142.3, 145.1, 146.6, 162.2, 162.3, 164.6. Elemental Analyses for C₂₄H₂₁BrN₂O₇ Calc: C, 54.46; H, 4.00; N, 5.29. Found: C, 54.48; H, 3.99; N, 5.28. MS (ESI): m/z 529.2 [M+H]⁺.

¹H NMR spectrum of compound **5a**

¹³C NMR spectrum of compound **5a**

¹H NMR spectrum of compound **5**b

¹³C NMR spectrum of compound **5b**

¹H NMR spectrum of compound **5**c

¹H NMR spectrum of compound **5d**

¹³C NMR spectrum of compound **5d**

¹H NMR spectrum of compound **5e**

¹³C NMR spectrum of compound **5**e

¹H NMR spectrum of compound **5**f

¹³C NMR spectrum of compound **5**f

¹H NMR spectrum of compound 5g

 ^{13}C NMR spectrum of compound $\mathbf{5g}$

¹H NMR spectrum of compound **5h**

¹³C NMR spectrum of compound **5h**

¹H NMR spectrum of compound **5**i

¹³C NMR spectrum of compound **5**i

¹H NMR spectrum of compound **5**j

¹³C NMR spectrum of compound **5**j

¹H NMR spectrum of compound **5**k

¹³C NMR spectrum of compound **5**k

¹H NMR spectrum of compound **5**

¹³C NMR spectrum of compound **5**l

¹H NMR spectrum of compound **5m**

¹³C NMR spectrum of compound **5m**

¹H NMR spectrum of compound **5n**

¹³C NMR spectrum of compound **5n**

¹H NMR spectrum of compound **50**

¹³C NMR spectrum of compound **50**

¹³C NMR spectrum of compound **13a**

¹³C NMR spectrum of compound **13b**

¹H NMR spectrum of compound **13c**

¹³C NMR spectrum of compound **13c**

¹H NMR spectrum of compound **13d**

¹³C NMR spectrum of compound **13d**

¹H NMR spectrum of compound **13e**

¹³C NMR spectrum of compound **13e**

¹H NMR spectrum of compound **13f**

¹³C NMR spectrum of compound **13f**

HSQC spectrum of 5a

HMBC spectrum of 5a

UV absorption spectrum of compound 5a

Emission spectrum of Compound 5a

UV absorption spectrum of Compound 13a

Emission Spectrum of Compound 13a

Correlation shown for H4 proton appearing at δ 4.75

Correlation shown for proton appearing at δ 9.61

