Electronic Supplementary Information

(Thio)urea-Mediated Benzoxazinone Opening: Mild Approach Towards Synthesis of *o*-(substituted amido)benzamides

Roshna V. Nair and Gangadhar J. Sanjayan*

Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

Contents	S1
General methods	S2
Synthetic Scheme	S3
Experimental procedures and References	S4-S15
Mass spectra of compounds	S16-S21
¹ H NMR spectra of compounds	S22-S29
¹³ C and DEPT-135 spectra of compounds	S30-S47

General Methods.

Unless otherwise stated, all the chemicals and reagents were obtained commercially. Dry solvents were prepared by the standard procedures. Analytical Thin Layer Chromatography was done on precoated silica gel plates (Kieselgel 60F₂₅₄, Merck). Unless otherwise stated Column Chromatographic purifications were done with 100-200 Mesh Silica gel. NMR spectra were recorded in CDCl₃ on AV 200 MHz, AV 400 MHz or AV 500 MHz spectrometers. All chemical shifts are reported in δ ppm downfield to TMS and peak multiplicities as singlet (s), doublet (d), quartet (q), broad singlet (bs), and multiplet (m). The titration studies were done in CDCl₃. Elemental analyses were performed on an Elmentar-Vario-EL (Heraeus Company Ltd., Germany). IR spectra were recorded in CHCl₃ using Shimadzu FTIR-8400 spectrophotometer. Melting points were determined on a Buchi Melting Point B-540. MALDI-TOF mass spectra were obtained from ABSCIEX TOF/TOFTM 5800 mass spectrometer.

SCHEME: Synthesis of oxazinones 1a-e

Experimental Procedures:

methyl 2-(2-bromo-2-methylpropanamido)benzoate 3b:

To an ice cold solution of anthranilic methyl ester (10 g, 72.99 mmol, 1 equiv) and triethylamine, TEA (12.95 mL, 99.89 mmol, 1.1 equiv) in dry DCM (100 mL) bromo isobutyryl bromide (9.92 mL, 80.29 mmol, 1.2 equiv) was slowly added. The reaction mixture was stirred for 1 hr at

Br room temperature. After completion, the reaction mixture was diluted with DCM (100 mL) and washed sequentially with saturated NaHCO₃, dil. HCl and brine solution. The organic layer was dried over Na₂SO₄, filtered and solvent was stripped off under reduced pressure. Column chromatographic purification (eluent: 10% AcOEt/pet. Ether, Rf: 0.3) of the residue afforded **3b** as a white solid (16.2g, 82%). mp: 44-45 °C; IR (CHCl₃) v (cm⁻¹): 3264, 3020, 2927, 2400, 1685, 1590, 1528, 1451, 1381, 1272, 1088, 1048, 967; ¹H NMR (200 MHz, CDCl₃): 11.85 (s, 1H), 8.71-8.66 (dd, J = 1.01 Hz, J = 8.59 Hz, 1H), 8.06-8.01 (dd, J = 1.77 Hz, J = 8.08 Hz, 1H), 7.59-7.5 (m, 1H), 7.14-7.06 (m, 1H), 3.93 (s, 3H), 2.06 (s, 6H); ¹³C NMR (50 MHz, CDCl₃): 170.6, 168.3, 140.9, 134.4, 130.8, 122.9, 120.1, 115.4, 60.1, 52.4, 31.7; Anal. Calcd. For C₁₂H₁₄BrNO₃: C, 48.02; H, 4.70; Br, 26.62; N, 4.67; Found: C, 48.10; H, 4.89; Br, 26.66; N, 4.29.

methyl 2-(2-azido-2-methylpropanamido)benzoate 3c:

To a solution of **3b** (10 g, 34.85 mmol, 1 equiv) in dry DMSO (60 mL) was added sodium azide (3.40 g, 52.28 mmol, 1.5 equiv) and catalytic amount of LiCl (0.15g, 3.48 mmol, 0.1 equiv), the reaction mixture was allowed to proceed at rt for 6h. After completion, the reaction mixture was

added to water and the aqueous layer was extracted with DCM. The combined organic layer was washed repeatedly with water and brine solution. The organic layer was dried over Na₂SO₄, filtered and solvent was stripped off under reduced pressure. Column chromatographic purification (eluent: 10% AcOEt/pet. Ether, Rf: 0.3) of the residue afforded **3c** as a white solid (8 g, 88%). mp: 40-42 °C; IR (CHCl₃) v (cm⁻¹): 3261, 3020, 2980, 2956, 2401, 1694, 1605, 1589, 1525. 1450, 1386, 1275, 1217, 1166, 1089, 967, 920; ¹H NMR (200 MHz, CDCl₃): 11.78 (s, 1H), 8.71-8.66 (d, J = 8.65 Hz, 1H), 8.04-8.0 (dd, J = 1.64 Hz, J = 7.96 Hz, 1H), 7.56-7.47 (m, 1H), 7.13-7.05 (m, 1H),

3.93 (bs, 3H), 1.6 (bs, 6H); ¹³C NMR (50 MHz, CDCl₃): 171.5, 168.1, 140.5, 134.3, 130.8, 122.9, 120.2, 115.7, 64.7, 52.3, 24.5; Anal. Calcd. For C₁₂H₁₄N₄O₃: C, 54.96; H, 5.38; N, 21.36; Found: C, 54.81; H, 5.23; N, 21.38.

General Procedures for 3d, 4b, 4e and 4g:

2-(2-azido-2-methylpropanamido)benzoic acid 3d:

O O NH O NH

To a solution of 3c (6.97 g, 27.88 mmol, 1 equiv.) in methanol (25 mL) and water (10 mL), LiOH·H₂O.2H₂O (5.02 g, 8.64 mmol, 3 equiv.) was added and the reaction mixture was stirred for 18 hrs. The solvent was stripped off under reduced pressure. To the residue water (50 mL) was added and acidified with dilute HCl. The water layer was extracted with

ethyl acetate (3 x 50 mL). The combined organic layer was washed with water and brine solution, dried over Na_2SO_4 and used for next reaction without further purification. Yield = 6.4 g (97.3%).

methyl 2-(2-nitrobenzamido)benzoate 4b:

Compound **4b** and **4c** were synthesized as per the reported procedure.¹

tert-butyl (*S*)-2-((2-((2-((2-(methoxycarbonyl)phenyl)carbamoyl)phenyl)carbamoyl)pyrrolidine-1-carboxylater 4d:

To a solution of Boc-^LPro-OH (6g, 27.9 mmol, 1.02 equiv.) and Et₃N (3.807 mL, 1.02 equiv.) in THF (60mL) at 0 °C, ethyl chloroformate (3.028 mL, 1.02 equiv.) was added drop wise and the reaction mixture was stirred for 1 h at 0 °C. A solution of the amine **4c** (7.38 g, 27.3 mmol, 1 equiv.) in THF (40 mL) was added slowly to the mixed anhydride solution, prepared above. The reaction mixture was stirred at 0 °C for an hour, then at room temperature for 2 h, followed by reflux at

70 °C for 6 h. After completion of reaction, THF was removed under reduced pressure

and then the compound was taken into DCM. The combined organic layers were washed sequentially with solutions of KHSO₄, NaHCO₃ and brine. Organic layer was then dried over Na₂SO₄ and was evaporated in vacuo. The crude product was purified by column chromatography (eluent: 30% AcOEt/pet. Ether, R_f: 0.3) to furnish 9a (10.3 g, 90%) as a fluffy white solid. mp: 71-73 °C; $[\alpha]^{24.87}$ _D: -119.448° (*c* 1, CHCl₃); IR (CHCl₃) *v* (cm⁻¹): 3448, 2976, 1693, 1655, 1607, 1584, 1524, 1435, 1388, 1318, 1271, 1164, 1097; ¹H NMR (200 MHz, CDCl₃) δ: 12.09_{rotamer} (s, 0.6H, amide), 12.05_{rotamer} (s, 0.4H, amide), 11.82_{rotamer} (s, 0.4H, amide), 11.76_{rotamer} (s, 0.6H, amide), 8.9-8.71(m, 2H), 8.11-8.07 (dd, J = 1.52 Hz, J = 7.96Hz, 1H), 7.92-7.85 (m, 1H), 7.88-7.49 (m, 2H), 7.29-7.12 (m, 2H), 4.5-4.27 (m, 1H), 3.96 (s, 3H), 3.85-3.74 (m, 2H), 2.37-2.11 (m, 2H), 2.04-1.87 (m, 2H), 1.45_{rotamer} (s, 3H), 1.33_{rotamer} (s, 6H); ¹³C NMR (50 MHz, CDCl3) δ: 172.2, 171.7, 168.9, 168.8, 167.4, 167.3, 154.8, 154.0, 141.2, 141.0, 139.8, 134.9, 134.3, 132.9, 130.8, 127.0, 123.2, 122.9, 121.1, 120.5, 115.4, 115.2, 80.0, 79.8, 62.5, 61.9, 52.47, 49.9, 47.7, 36.5, 31.4, 30.4, 29.5, 28.3, 28.2, 28.1, 24.5, 24.1, 23.8, 23.6, 23.3; MALDI-TOF/TOF: 490.310 (M+Na)⁺, 506.3015 (M+K)⁺; Elemental analysis calculated for C₂₅H₂₉N₃O₆: C, 64.23; H, 6.25; N, 8.99. Found: C, 64.21; H, 6.33; N, 9.02.

General Procedures for 1a, 1d and 1e:

2-(2-azidopropan-2-yl)-4H-benzo[d][1,3]oxazin-4-one 1a:

To a solution of **3d** (3 g, 12.096 mmol, 1 equiv) in DCM, EDC.HCl (2.54 g, 13.306 mmol, 1.2 equiv) was added. The solution was allowed to stir for 2h. After the completion, reaction mixture was diluted with DCM (30 mL), the organic layer was combined and was washed with

water, followed by NaHCO₃ solution and brine solution. The organic layer was then dried over Na₂SO₄ and was removed *in vacuo*. Colorless liquid was isolated with 94% yield. Characterization was difficult due to unstable nature of the oxazinone. IR (CHCl₃) v (cm⁻¹): 3020, 2979, 2401, 2117, 1678, 1606, 1587, 1524, 1450, 1409, 1299, 1165, 1046, 1607, 1584, 1524, 1435, 1388, 1318, 1271, 1164, 1097, 927; ¹H NMR (200 MHz, CDCl₃): 8.22-8.18 (d, J = 1.01 Hz, J = 7.83 Hz, 1H), 7.88-7.79 (m, 1H), 7.68-7.64 (d, J = 7.58 Hz, 1H), 7.59-7.51 (m, 1H), 1.69 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 161.9, 158.8, 145.6, 136.6, 128.9, 128.5, 127.4, 116.8, 62.4, 24.8.

6,7-difluoro-2-phenyl-4H-benzo[d][1,3]oxazin-4-one 1b:

Compound **1b** was synthesized as per the reported procedure.²

2-(2-nitrophenyl)-4H-benzo[d][1,3]oxazin-4-one 1c:

Compound **3c** was synthesized as per the reported procedure.¹

 O_2N

The crude product was purified by column chromatography (eluent: 30% AcOEt/pet. Ether, R_f : 0.3) to furnish **1d** (4.5 g, 98%) as a fluffy white solid. mp: 95-97°C; $[\alpha]^{25.58}$: -18.316° (*c* 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3448, 2977, 1770, 1694, 1606, 1584, 1520, 1477, 1446, 1388, 1293, 1251, 1163, 1119, 1036, 1009; ¹H NMR (200 MHz,

CDCl₃) δ : 12.05_{rotamer} (0.8H, amide), 11.79-11.72_{rotamer} (0.2H, amide), 8.9-8.68 (m, 1H), 8.23-8.19 (m, 1H), 8.06-8.02 (m, 1H), 7.94-7.85 (m, 1H), 7.58-7.50 (m, 2H), 7.22-7.12 (m, 1H), 4.44-4.23 (m, 1H), 3.76-3.39 (m, 2H), 2.43-2.28 (m, 1H), 2.24-2.05 (m, 1H), 1.96-1.86 (m, 2H), 1.43-1.36_{rotamer} (m, 3H), 1.31_{rotamer} (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 172.2, 167.2, 158.1, 156.9, 154.9, 145.3, 141.0, 139.8, 137.0, 133.7, 132.8, 130.7, 129.5, 128.7, 128.4, 127.1, 126.8, 123.0, 120.9, 120.6, 120.5, 116.4, 115.7, 95.9, 80.5, 79.9, 62.8, 62.4, 61.5, 52.4, 47.4, 46.6, 31.7, 28.0, 27.2, 24.0; MALDI-TOF: 458.1276 (M+Na⁺); 474.0995 (M+K⁺);. Anal. calcd for C₁₅H₁₂N₂O₅: C, 66.19; H, 5.79; N, 9.65. Found: C, 66.39; H, 5.89; N, 9.55.

6-isobutoxy-2-(5-isobutoxy-2-nitrophenyl)-4H-benzo[d][1,3]oxazin-4-one 1e:

The crude product was purified by column chromatography (eluent: 15% AcOEt/pet. Ether, R_{f} : 0.3) to furnish **1e** (98%) as a waxy solid. IR (CHCl₃) v (cm⁻¹): 3438, 2980, 1772, 1686, 1580,

1483, 1447, 1369, 1299, 1158; ¹H NMR (200 MHz, CDCl₃) δ : 7.81-7.76 (d, *J* = 8.97 Hz, 1H), 7.32-7.31 (m, 1H), 7.14-7.08 (dd, *J* = 2.78 Hz, *J* = 9.09 Hz, 1H), 7.00-6.97 (dd, *J* = 2.78 Hz, *J* = 8.84 Hz, 1H), 3.58-3.53 (dd, *J* = 3.03 Hz, *J* = 6.57 Hz, 4H), 1.91-1.77 (m, 2H), 0.76-0.73 (dd, *J* = 3.16 Hz, *J* = 6.69 Hz, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 162.9, 159.6, 159.0, 153.7, 140.7, 140.1, 129.1, 128.7, 127.1, 126.1, 117.8, 116.5, 116.4, 105.6, 75.4, 75.1, 29.6, 28.1, 19.1, 19.0; LC-MS: 435.06 (M+Na⁺); 467.08 (M+K⁺);. Anal. calcd for C₂₂H₂₄N₂O₆: C, 64.07; H, 5.87; N, 6.79; Found: C, 64.21; H, 5.89; N, 6.80.

Table 1: Optimisation of coupling of 2-(2-azidopropan-2-yl)-2H-benzo[d][1,3]oxazin-4-one **1a** with H-^LPro-OBn.

S. No.	Condition	Inference
1	$Ti(O^{i}Pr)_{4}$, DCM, heat	No coupling, oxazinone decomposed
2	Sc(OTf) ₃ , DCM, 80 °C	Coupling trace
3	Dry Toluene, heat	Coupling trace
4	Acetonitrile, MW, 280W, 20 min	No coupling observed
5	DBU, 4Å MS, DMF	Coupling trace
6	Dry Toluene, MW, MW, 280W, 20 min	Coupling trace
7	10% Schreiner's (thio)urea, toluene, 24h	65% product formation

	0 R ₁ R ₂ N 1a-e	10 m 0 R		$\xrightarrow{H}_{S} \xrightarrow{H}_{CF_{3}} \xrightarrow{CF_{3}} \xrightarrow{CF_{3}}$	$R_1 \rightarrow C$ $R_2 \rightarrow R_2$ $R_2 \rightarrow R_2$ $R_2 \rightarrow R_2$ $R_2 \rightarrow R_2$ $R_1 \rightarrow C$	Bn
	-R ₁	-R ₂	-R	Time (h)	Conversion (%)	Yield (%) ^a
2a	^{r, r, r} NNN3	Н	Н	24	100	81
2b	int ^e	F	F	36	92	70 ^b
2c		Н	Н	9	100	97
2d		Н	Н	24	100	75
2e	o ^j Bu O ₂ N	OiBu	Н	48	52	91°

Table 2: Comparison of coupling of oxazinones 1a-e with H-^LPro-OBn in DMSO

^aUnless specified, reaction was carried out at 25 °C with oxazinone (1 equiv.) and H-^LPro-OBn (1.5 equiv.). ^bYield calculated after 8% oxazinone recovery. ^cYield calculated after 48% oxazinone recovery.

General Procedures for 2a-e:

To a solution of oxazinone (1 equiv.) and amine (1.5 equiv.) taken in DMSO (1 mL), 1,3bis(3,5-bis(trifluoromethyl)phenyl)thiourea (10 mol%) was added. Completion of the reaction was constantly monitored by TLC. After the complete/maximum conversion of the oxazinone moiety, water (2 mL) was added to the reaction mixture. Compound was then extracted into DCM (3 x 5 mL) from the aqueous layer. Organic layer was pooled together and was washed with KHSO₄ solution followed by brine solution. The organic layer was then dried over Na₂SO₄ and was evaporated *in vacuo* to afford coupled product. Compounds were purified by silica gel column chromatography.

benzyl 1-(2-(2-azido-2-methylpropanamido)benzoyl)pyrrolidine-2-carboxylate 2a:

The crude product was purified by column chromatography (eluent: 25% AcOEt/pet. Ether, R_{f} : 0.4) to furnish **2a** (81%) as a pale yellow glassy solid. $[\alpha]^{24.7}_{D}$: -67.56° (*c* 0.5,

CHCl₃); IR (CHCl₃) v (cm⁻¹): 3307, 2923, 2852, 2115, 1744, 1692, 1629, 1597, 1520, 1454, 1412, 1305, 1269, 1166; ¹H NMR (200 MHz, CDCl₃) δ : 10.12_{rotamer} (0.8H, amide), 9.59_{rotamer} (0.2H, amide), 8.39-8.35 (d, J = 8.34 Hz, 0.8H), 8.39-8.35 (d, J = 8.08 Hz, 0.2H), 7.50-7.38 (m, 6H), 7.19-6.56 (m, 2H), 5.26 (s, 2H), 5.04-4.72 (m, 1H), 3.94-3.78 (m, 0.4H), 3.73-3.54 (m,1.6H), 2.24-2.05 (m, 1H), 2.38-2.27 (m, 1H), 2.14-1.85 (m, 3H), 1.63 (s, 6H); ¹³C NMR (50

MHz, CDCl₃) δ : 171.5, 171.2, 169.3, 168.5, 136.3, 135.6, 135.0, 131.1, 130.6, 128.5, 128.2, 128, 127.4, 126.4, 124.7, 123.3, 122.6, 121.9, 66.8, 64.5, 61.6, 59.2, 50.2, 46.6, 31.3, 29.1, 25.1, 24.5, 24.4; MALDI-TOF/TOF: 458.1152 (M+Na⁺); 474.0970 (M+K⁺); Anal. calcd for C₂₃H₂₅N₅O₄: C, 63.44; H, 5.79; N, 16.08. Found: C, 63.66; H, 5.98; N, 16.10.

benzyl 1-(2-benzamido-4,5-difluorobenzoyl)pyrrolidine-2-carboxylate 2b:

The crude product was purified by column chromatography (eluent: 15% AcOEt/pet. Ether, R_f: 0.4) to furnish **2b** (70% after 8% recovery of starting material) as a pale yellow solid. mp: 78-80 $^{\circ}C;[\alpha]^{25.84}D$: -39.14° (*c* 1, CHCl₃); IR (CHCl₃) v (cm-1): 3347, 2924, 1744, 1681, 1615, 1533, 1440, 1409, 1279, 1167; ¹H NMR (200

MHz, CDCl₃) δ : 10.4 (1H, amide), 8.65-8.54 (dd, J= 7.58 Hz, J= 12.88 Hz, 1H), 8.11-7.92 (m, 2H), 7.61-7.31 (m, 9H), 5.27- 5.12 (m, 2H), 4.78-4.72 (m, 1H), 3.70-3.61 (m, 2H), 2.41-2.27 (m, 1H), 2.09-1.91 (m, 3H); ¹³C NMR (50 MHz, CDCl₃) δ : 171.4, 167.4, 165.4, 135.3, 134.8, 133.8, 133.4, 132.1, 130.0, 128.6, 128.4, 128.0, 127.4, 119.5, 116.3, 115.9, 111.7, 111.3, 67.0, 598.5, 50.5, 29.6, 29.0, 25.2; MALDI-TOF/TOF: 487.2480 (M+Na⁺); 503.1575 (M+K⁺); Anal. calcd for C₂₆H₂₂F₂N₂O₄: C, 67.23; H, 4.77; F, 8.18; N, 6.03. Found: C, 67.45; H, 4.84; F, 8.40; N, 6.0.

benzyl 1-(2-(2-nitrobenzamido)benzoyl)pyrrolidine-2-carboxylate 2c:

The crude product was purified by column chromatography (eluent: 40% AcOEt/pet. Ether, R_{f} : 0.3) to furnish **2c** (90%) as a waxy solid. $[\alpha]^{25.86}_{D}$: -19.0687° (*c* 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 2924, 2853, 1739, 1688, 1625, 1531, 1456, 1415, 1348, 1310, 1186; ¹H

NMR (500 MHz, CDCl₃) δ : 9.43_{rotamer} (s, 0.9H, amide), 9.10_{rotamer} (s, 0.1H, amide), 8.50-8.49_{rotamer} (d, J = 8.24 Hz, 0.9H), 8.24-8.22_{rotamer} (m, 0.1H), 8.08-8.06 (d, J = 8.24 Hz, 0.9H), 8.01-7.99 (m, 0.1H), 7.73-7.65 (m, 2H), 7.58-7.55 (m, 1H), 7.51-7.48 (m, 1H), 7.41-7.14 (m, 7H), 5.07-4.98 (m, 2H), 4.71-4.69_{rotamer} (m, 0.9H), 4.51-4.49_{rotamer} (m, 0.1H), 3.64-3..6 (m, 1H), 3.51-3.47 (m, 1H), 2.37-2.27 (m, 1H), 2.01-1.86 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 172.1,

168.5, 164.9, 146.4, 135.5, 135.3, 133.7, 133.0, 130.9, 130.4, 129.1, 128.6, 128.4, 128.0, 126.6, 125.9, 124.3, 124.1, 122.3, 67.0, 58.9, 49.7, 29.2, 25.0; MALDI-TOF/TOF: 496.4159 (M+Na⁺); 512.3204 (M+K⁺); Anal. calcd for $C_{26}H_{23}N_3O_6$: C, 65.95; H, 4.90; N, 8.87;. Found: C, 65.74; H, 4.69; N, 8.95.

tert-butyl

2-((2-((2-((benzyloxy)carbonyl)pyrrolidine-1-carbonyl)phenyl) carbamoyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate 2d:

The crude product was purified by column chromatography (eluent: 50% AcOEt/pet. Ether, R_{f} : 0.3) to furnish **2d** (75%) as a waxy solid. $[\alpha]^{25.6}_{D}$: -48.768° (*c* 0.5, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3276, 2925, 2853, 1742, 1694, 1626, 1585, 1520, 1449, 1411, 1298, 1216, 1165, 1121, 1089, 917; ¹H NMR (200 MHz, CDCl₃) δ : 11.68_{rotamer} (0.6H,

^{2d} amide), 11.63_{rotamer} (0.4H, amide), 10.37_{rotamer} (0.6H, amide), 10.21_{rotamer} (0.4H, amide), 8.65-8.61 (d, J = 8.34 Hz, 1H), 8.50-8.46_{rotamer} (d, J = 7.83 Hz, 0.9H), 8.37-8.33_{rotamer} (d, J = 8.08 Hz, 0.1H), 7.70-7.66 (m, 1H), 7.43-7.39 (m, 3H), 7.13-6.98 (m, 2H), 5.12 (s, 2H), 4.41-4.35 (m, 1H), 4.69-4.65_{rotamer} (m, 0.4H), 4.25-4.18_{rotamer} (m, 0.6H), 3.77-3.36 (m, 2H), 2.33-2.06 (m, 4H), 1.95-1.78 (m, 4H), 1.39_{rotamer} (s, 3H), 1.27_{rotamer} (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ : 172.1, 171.6, 171.5, 169, 166.9, 154.8, 154.0, 139.7, 136.8, 135.3, 132.8, 131.5, 131.0, 128.4, 128.2, 127.8, 127.4, 127.3, 124.3, 123.1, 122.9, 121.9, 120.8, 120.2, 80.0, 79.8, 77.2, 66.8, 62.4, 61.8, 52.3, 50.4, 46.9, 46.6, 38.4, 36.5, 31.7, 31.3, 30.4, 29.5, 29.0, 28.1, 25.1, 24.5, 24.1, 23.6; MALDI-TOF/TOF: 663.4386 (M+Na⁺); 679.4749 (M+K⁺); Anal. calcd for C₃₆H₄₀N₄O₇: C, 67.48; H, 6.29; N, 8.74;. Found: C, 67.68; H, 6.16; N, 8.89.

benzyl 1-(5-isobutoxy-2-(5-isobutoxy-2-nitrobenzamido)benzoyl)pyrrolidine-2carboxylate 2e:

The crude product was purified by column chromatography (eluent: 35% AcOEt/pet. Ether, R_{f} : 0.3) to furnish **2e** (91% after 48% recovery of starting material) as a waxy solidWaxy solid. [α]^{25.6}_D: -48.768° (*c* 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3327, 3020, 2964, 2930, 2401, 1735, 1680, 1630, 1590, 1471, 1446, 1397, 1341, 1030; ¹H NMR

(200 MHz, CDCl₃) δ : 8.94_{rotamer} (0.9H, amide), 8.53_{rotamer} (0.1H, amide), 8.34-8.30_{rotamer} (d, J = 9 Hz, 0.9H), 8.12-8.07 (d, J = 9.22 Hz, 1H), 8.02-7.97_{rotamer} (d, J = 9 Hz, 0.1H), 7.37-7.23 (m, 5H), 7.07-6.87 (m, 4H), 5.11-4.93 (2H), 4.71-4.64_{rotamer} (m, 0.9H), 4.54-4.51_{rotamer} (m, 0.1H), 3.83-3.80 (d, J = 6.57 Hz, 2H), 3.73-3.70 (d, J = 6.57 Hz, 2H), 3.65-3.42 (m, 2 H), 2.38-1.91 (m, 7H), 1.04-0.98 (dd, J = 2.65 Hz, J = 6.69 Hz, 4H); ¹³C NMR (200 MHz, CDCl₃) δ : 172.1, 168.1, 165.0, 163.6, 155.7, 138.4, 135.7, 135.3, 128.5, 128.3, 128.0, 127.94, 127.9, 126.9, 124.1, 116.4, 115.4, 114.3, 112.4, 75.3, 74.8, 67.0, 58.8, 49.6, 29.6, 29.2, 28.2, 28.0, 24.9, 19.2, 19.0; MALDI-TOF/TOF: 640.8233 (M+Na⁺); 656.9022 (M+Na⁺); Anal. calcd for C₃₄H₃₉N₃O₈: C, 66.11; H, 6.36; N, 6.80;. Found: C, 66.34; H, 6.50; N, 6.85.

	0 0 N 0_2N 1c	I0 mol% CF ar	N CF ₃ S CF ₃ nines	R' 0 1 0 2 N 2f-j
	-R'	Time (h)	Conversion (%)	Yield (%) ^a
2f		0.5	100	94
2g	H HN J	0.12	100	94
2h	HN 	48	60	82 ^b
2i	HN HN	36	100	89
2ј	HZ	0.05	100	97

.. ..

Table 3. Comparison of coupling of different amines with oxazinone 1c

^aUnless specified, reaction was carried out at 25 °C with oxazinone (1 equiv.) and amine (1.5 equiv.). ^bYield calculated after 40% oxazinone recovery.

2-nitro-N-(2-(piperidine-1-carbonyl)phenyl)benzamide 2f:

The crude product was purified by column chromatography (eluent: 50% AcOEt/pet. Ether, R_{f} : 0.4) to furnish **2f** (94%) as a white solid. mp: 136-138°C; IR (CHCl₃) v (cm⁻¹): 3230, 3004, 2938, 2857, 1678, 1615, 1600, 1531, 1436, 1348, 1310, 1287, 1257, 1125, 1003, 856; ¹H NMR (200 MHz, CDCl₃) δ : 9.3 (1H, amide), 8.27-8.23 (d, *J*= 8.21 Hz, 1H), 8.11-8.07 (d, *J*= 8.21 Hz, 1H), 7.76-7.57 (m, 3H), 7.52-7.43 (dt, *J*=

2f 1.77 Hz, J= 8.46 Hz, 1H), 7.28-7.14 (m, 2H), 3.58 (bs, 4H), 1.67 (bs, 6H); ¹³C NMR (50 MHz, CDCl₃) δ: 168.7, 164.5, 146.4, 135.9, 133.9, 132.8, 130.7, 130.6, 128.7, 127.2, 125.9, 124.7, 124.2, 124.0, 64.7, 43.6, 43.3, 29.7, 26.4, 25.6, 24.4;

MALDI-TOF/TOF: 376.1107 (M+Na⁺); 392.0699 (M+K⁺); Anal. calcd for C19H19N3O4: C, 64.58; H, 5.42; N, 11.89;. Found: C, 64.69; H, 5.23; N, 11.87.

(S)-2-nitro-N-(2-((1-phenylethyl)carbamoyl)phenyl)benzamide 2g:

The crude product was purified by column chromatography (eluent: 40% AcOEt/pet. Ether, R_f: 0.3) to furnish **2g** (94%) as a white solid. $[\alpha]^{25.72}_{D}$: -0.612° (*c* 1, CHCl₃); IR (CHCl₃) v (cm-1): 3251, 2924, 2853, 1681, 1600, 1531, 1437, 1348, 1287, 856; ¹H NMR (200 MHz, CDCl₃) δ : 11.61 (1H, amide), 8.65-8.61 (d, *J*= 8.21 Hz, 1H), 8.06-8.02 (m, 1H), 7.73-7.60 (m, 3H), 7.59-7.46 (m, 2H), 7.38-7.28 (m, 5H), 7.18-7.10 (dt, *J* = 0.88 Hz, *J*= 7.58 Hz, 1H), 6.68 (bs, 1H), 5.29-5.15

^{2g} (pentet, J = 7.07 Hz, 1H), 1.61-1.57 (d, J = 6.95 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ : 168.0, 164.4, 146.9, 142.5, 139.0, 133.7, 132.8, 132.7, 130.8, 128.8, 128.4, 127.6, 126.5, 126.0, 124.7, 123.7, 122.0, 120.8, 49.4, 29.7, 21.6; MALDI-TOF/TOF: 412.1174 (M+Na⁺); 428.0916 (M+K⁺); Anal. calcd for C₂₂H₁₉N₃O₄: C, 67.86; H, 4.92; N, 10.79. Found: C, 67.78; H, 4.69; N, 10.89.

methyl 2-methyl-2-(2-(2-nitrobenzamido)benzamido)propanoate 2h:

The crude product was purified by column chromatography (eluent: 40% AcOEt/pet. Ether, R_f: 0.4) to furnish **2h** (82% after 40% recovery of the starting material) as a white solid. mp: 125-126°C; IR (CHCl₃) v (cm⁻¹): 3325, 2925, 2854, 1740, 1680, 1645, 1601, 1532, 1447, 1348, 1306, 1193, 1153, 904; ¹H NMR (200 MHz, CDCl₃) δ : 11.39 (1H, amide), 8.64-8.60 (d, *J*= 8.08 Hz, 1H), 8.07-8.03 (d, *J*= 8.08 Hz, 1H), 7.75-7.49

2h (m, 5H), 7.18-7.10 (t, J= 7.71 Hz, 1H), 6.99 (t, 1H), 3.71 (s, 3H), 1.61 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ : 174.7, 168.4, 164.4, 146.8, 138.9, 133.7, 132.9, 132.7, 130.8, 128.4, 16.8, 124.6, 123.6, 122.0, 120.9, 57.0, 52.7, 24.6; MALDI-TOF/TOF: 408.4238 (M+Na⁺); 424.3958 (M+K⁺); Anal. calcd for C₁₉H₁₉N₃O₆: C, 59.22; H, 4.97; N, 10.90. Found: C, 59.38; H, 4.69; N, 10.81.

(R)-methyl 3-methyl-2-(2-(2-nitrobenzamido)benzamido)butanoate 2i:

The crude product was purified by column chromatography (eluent: 40% AcOEt/pet. Ether, R_f: 0.4) to furnish **2i** (89%) as a pale yellow solid. mp: 145-146°C; $[\alpha]^{26.18}$ _D: -7.336° (*c* 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3332, 2925, 2853, 1740, 1687, 1646, 1588, 1532, 1447, 1349, 1311, 1210; ¹H NMR (200 MHz, CDCl₃) δ : 11.46 (1H, amide), 8.72-8.68 (d, *J*= 8.21 Hz, 1H), 8.07-8.03 (d, *J*= 7.83 Hz, 1H), 7.76-7.53 (m, 5H), 7.23-7.15 (t, *J*= 7.71 Hz, 1H), 6.87-6.82 (d, *J*= 8.34 Hz,

2i (III, 511), 7.23-7.13 (I, J = 7.71 Hz, 111), 0.87-0.82 (I, J = 8.34 Hz, 1H), 4.68-4.62 (I, J = 5.05 Hz, J = 8.46 Hz, 1H), 3.77 (s, 3H), 2.34-2.18 (m, 1H), 1.01-0.97 (I, J = 1.14 Hz, J = 6.82 Hz, 6H); ¹³C NMR (50 MHz, CDCl₃) & 172.0, 168.6, 164.3, 146.9, 139.1, 133.7, 133.1, 132.9, 130.7, 128.4, 126.7, 124.6, 123.7, 121.9, 120.2, 57.4, 52.4, 31.4, 18.9, 18.0; MALDI-TOF/TOF: 400.3518 (M+H⁺); 422.3262 (M+Na⁺); 438.2873 (M+K⁺); Anal. calcd for C₂₀H₂₁N₃O₆: C, 60.14; H, 5.30; N, 10.52. Found: C, 60.01; H, 5.39; N, 10.85.

2-nitro-N-(2-(propylcarbamoyl)phenyl)benzamide 2j:

The crude product was purified by column chromatography (eluent: 35% AcOEt/pet. Ether, R_{f} : 0.3) to furnish **2j** (97%) as a white solid. mp: 167-169°C; IR (CHCl₃) v (cm⁻¹): 3449, 2925, 1641, 1599, 1525, 1448, 1347; ¹H NMR (200 MHz, CDCl₃) δ : 11.72 (1H, amide), 8.70-8.65 (d, *J*= 8.21 Hz, 1H), 8.07-8.03 (d, *J*= 7.96 Hz, 1H), 7.73-7.49 (m, 5H), 7.18-7.10 (t, *J*= 7.83 Hz, 1H), 6.47 (s, 1H), 3.4-3.29 (m,

2j 7.33 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ: 168.8, 164.3, 139.1, 133.7, 133.0, 132.7, 130.7, 128.4, 126.4, 124.7, 123.6, 121.9, 120.8, 63.6, 63.1, 41.7, 29.7, 22.6, 11.4; MALDI-TOF: 350.2100 (M+Na⁺); 366.2022 (M+K⁺); Anal. calcd for C17H17N3O4: C, 62.38; H, 5.23; N, 12.84. Found: C, 62.60; H, 5.21; N, 12.88.

References:

1] Y. Hamuro, S. J. Geib and A. D. Hamilton, J. Am. Chem. Soc., 1997, 119, 10587-10593.

2] A. A. Laeva, E. V. Nosova, G. N. Lipunova, A. V. Golovchenko, N. Yu. Adonin, V. N. Parmon, and V. N. Charushin. *Russ. J. Org. Chem.*, 2009, *45*, 913–920.

TOF/TOF™ Linear Spec #1[BP = 474.1, 6871]

TOF/TOF™ Linear Spec #1[BP = 503.1, 6335]

S17

TOF/TOF™ Linear Spec #1[BP = 563.4, 25560]

TOF/TOF[™] Linear Spec #1[BP = 473.5, 82265]

90

80

70

60

50

40

30

20

10

0 0 299.0

% Intensity

S19

505.0

<u>Note</u>: The compounds are labeled using different symbols, *i.e.* Product $2a (\star)$, Oxazinone 1a (*), thiourea (\checkmark) and H-^LPro-OBn (+).

