Supplementary Information

High Rate Capacity Retention of Binder-free, Tin Oxide Nanowire Arrays Using Thin Titania and Alumina Coatings

Tu Quang Nguyen^{a,b}, Arjun Kumar Thapa^a, Venkat Kalyan Vendra^{a,b}, Jacek B. Jasinski^a, Gamini U. Sumanasekera^{a,c} and Mahendra K. Sunkara^{a,b,*}

^aConn Center for Renewable Energy Research ^bDepartment of Chemical Engineering ^cDepartment of Physics University of Louisville Louisville, KY 40292 ^{*}Email: <u>mahendra@louisville.edu</u>

Fig. S1: Cyclic voltammetry of SnO₂ NWs at the voltage range of $2.2 \div 0.005$ V using scan speed of 5 mV/min

Table S1: 1^{st} cycle electrochemical performance comparison of pure $SnO_2\ NWs$ and titania-coated $SnO_2\ NWs$

Sample	Discharge capacity, mAhg ⁻¹	Charge capacity, mAhg ⁻¹	Columbic efficiency, %	ICL, mAhg ⁻¹	ICL due to reduction of tin oxide to tin , mAhg ⁻¹	ICL due to SEI formation , mAhg ⁻¹
Pure SnO ₂ NWs	1680	832	49.5	848	400	448
titania- coated SnO ₂	1705	1238	72.6	467	520	-

Fig. S2: The charge-discharge capacities with times vs. voltage profiles of titania-coated SnO_2 NWs electrode at 3.0-1.0 V

Fig. S3: (a) Charge and discharge capacities vs. cycle number of titania-coated SnO_2 NWs at current density of 1500 mA/g; (b) the photograph of delaminated electrode: the tin oxide film (black in color) was completely delaminated from stainless substrate and adhered onto the separator (white in color).

Fig. S5: EDS data of titania-coated SnO_2 NWs after cycling at votage of 1.0 - 3.0V

Fig. S6: TEM image of titania-coated SnO_2 NWs after cycling at showing nanowire morphology with hollow structure

Fig. S7: HR-TEM of titania-coated SnO_2 NWs after 1^{st} cycle showing presence of tin nanoclusters on nanowire surface

Fig. S8: SEM, TEM (inset) images of thin layer of titania-(a), alumina-(b) coated SnO_2 NWs after cycling. The white spot as Sn clusters are presence in either titania- or alumina-coated SnO_2 NWs

Fig. S9: EDS data of 5 nm titania-coated SnO_2 NWs after cycling

	E, GPa	G,	Structure	Ref.
		GPa		
	36-43		10-18 nm wall thickness, 35-70 nm diameter,	[1]
			nanotube	
	23		10 nm wall thickness, 65 nm diameter, nanotube	[2]
Titania	44		30 nm wall thickness, 80 nm diameter, nanotube	[2]
	151		200 nm thickness, anatase film	[3]
	146		280 nm thickness film	[4]
		140		[5]
	168-		50-300 nm thickness film	[6]
Alumina	182			
		235		[7]

Table S2: Young's and bulk modulus of alumina and titania

Titania nanotube deformation calculations

For a thin wall titania tube with external and internal nominal diameters of \sim 75 nm and \sim 65 nm, **Shokuhfar** et al. has reported that the maximum axial strain of 5%. Assuming that the radial strain is the same as axial strain (it should be actually smaller), we can calculate the volume expansion of a titania shell of 10 nm wall thickness, 300 nm inner diameter as following:

%Volume =
$$\frac{V_2}{V_1} = \frac{\pi R_2^2 L_2}{\pi R_1^2 L_1} = \frac{\pi (R_1 + 0.05R_1)^2 (L_1 + 0.05L_1)}{\pi R_1^2 L_1}$$

= 115.7%

where V_1 , V_2 are volume of titania nanotube before and after deformation, respectively

R1, R2 are inner radius of titania nanotube before and after deformation, respectively

L₁, L₂ are length of titania nanotube before and after deformation, respectively.

References

1. Crawford, G.A., N. Chawla, and J.E. Houston, Nanomechanics of biocompatible TiO2 nanotubes by Interfacial Force Microscopy (IFM). Journal of the Mechanical Behavior of Biomedical Materials, 2009. 2(6): p. 580-587.

2. Shokuhfar, T., et al., Direct Compressive Measurements of Individual Titanium Dioxide Nanotubes. ACS Nano, 2009. 3(10): p. 3098-3102.

3. Borgese, L., et al., Young modulus and Poisson ratio measurements of TiO2 thin films deposited with Atomic Layer Deposition. Surface and Coatings Technology, 2012. 206(8–9): p. 2459-2463.

4. Anderson, O., et al., Density and Young's modulus of thin TiO2 films. Fresenius' Journal of Analytical Chemistry, 1997. 358(1-2): p. 315-318.

5. Fischer-Cripps, A.C., 2004. Nanoindentation, second ed. Springer, New York.

6. Tripp, M.K., et al., The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sensors and Actuators A: Physical, 2006. 130–131(0): p. 419-429.

7. Lang et al., Properties of High-Temperature Ceramics and Cermets, Elasticity and Density at Room Temperature, Monograph 6, National Bureau of Standards, Washington, D.C. (1960).