Supplementary data

Table S-1

Sample #	catalyst	Catalyst concentration mol g ⁻¹	Temperature $^{\circ}\!\!\mathbb{C}$	Specific surface area m ² g ⁻¹
S1	NaHCO ₃	0.05	820	552
S1-1	NaHCO ₃	0.025	820	524
S2	NaOH	0.05	820	1616
S2-1	NaOH	0.025	820	376
S3	КОН	0.05	820	2490
S3-1	КОН	0.025	820	1058

Activation parameters the surface area of activated carbon samples

The Table S-1 indicates that KOH is the best catalyst among these three catalysts for creating a higher specific surface area. With the increasing quantity of the catalyst, the surface area of the activated carbon will increase. NaOH is more obvious than the other two catalysts, and NaHCO₃ just show a slightly increase.

Fig. S1. The cycling performance of S1 at the charge/discharge current of 0.1, 0.5, 1.0 and 5.0 A g^{-1} .

Fig. S2. The cycling performance of S2 at the charge/discharge current of 0.1, 0.5, 1.0 and 5.0 A g^{-1} .

The cycling performances of these 3 samples are shown in Fig. S1, Fig. S2 and Fig. S3. As are shown here, at the lower current density, each of these three samples is presenting a

relatively higher specific capacitance than the specific capacitance at high current. Because of the layered graphene and hierarchical porous carbon structures, at the high current density of 5.0 A g^{-1} , the activated carbon S3 still present a high specific capacitance of 172 F g⁻¹.