Electronic Supporting Information (ESI)

Aqueous Ionic Liquids and Deep Eutectic Solvents

for Cellulosic Biomass Pretreatment and Saccharification

Shuqian Xia,^{*a*} Gary A. Baker, ^{*b*} Hao Li,^{*a*} Sudhir Ravula,^{*b*} and Hua Zhao^{*c}

^a School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China

^b Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA

^c Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA

31404, USA

Runge-Kutta algorithm

To curve-fit our hydrolysis data using the Michaelis–Menten equation (Eq. 1), the Runge-Kutta algorithm was followed to make four evaluations of d[S]/dt between each time step. The first evaluation is the same as the Euler's method. The second and third use the previous step to evaluate d[S]/dt at the middle of the time step, and the fourth evaluation uses the third at the end of the time step. The four evaluations are weighted and used to generate a single step from i to i+1. The equations are:

- $\mathbf{k}_1 = \mathbf{\Delta} \mathbf{t} \, \mathbf{d}[S_i] / \mathbf{d} \mathbf{t}$
- $\mathbf{k}_2 = \mathbf{\Delta t} \ \mathbf{d}([S_i] + \mathbf{k}_1/2)/\mathbf{dt}$

 $\mathbf{k}_3 = \mathbf{\Delta t} \, \mathbf{d}([S_i] + \mathbf{k}_2/2)/\mathbf{dt}$

 $\mathbf{k}_4 = \mathbf{\Delta t} \ \mathbf{d}([S_i] + \mathbf{k}_3)/\mathbf{dt}$

 $[S_{i+1}] = [S_i] + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6}$

Values of V_{max} and K_{m} can be calculated from the above equations using Excel Solver through minimizing the SSE value (sum of the squares of the error), which is defined below as the sum of

^{*} Corresponding author. Email: huazhao98@gmail.com (or zhaoh@savannahstate.edu).

squared differences between predicted and measured values (or known as least squares of the residuals),

$$SSE = \sum_{i=1}^{n} ([S]_{i,exp} - [S]_{i,cal})^{2}$$

Where *n* is the total number of time-dependent data for each hydrolysis reaction.

	Ionic solvent	Molar mass (g/mol)	Commercial source (catalog #) /preparation and purity	Cellulose recovery (%) (pretreated by pure, 2.0 M and			
				1.0 M IL or DES respectively)			
Diff	Different anions						
1	[BMIM]Cl	174.67	Alfa Aesar (L19749), 96%	175%, 100%, 100%			
2	[BMIM]Br	219.12	Alfa Aesar (H27201), 99%	69%, 92%, 95%			
3	[BMIM][BF ₄]	226.02	Alfa Aesar (L19087), 98%	85%, 99%, 96%			
4	[BMIM][CF ₃ COO]	252.23	Anion exchange (using CF ₃ COOH), ^{1, 2} 99%	94%, 96%, 95%			
5	[BMIM][OAc]	198.26	Fluka (39952), 95%	96%, 95%, 97%			
6	[BMIM][OTf]	288.29	Alfa Aesar (L19765), 98%	83%, 92%, 95%			
7	[BMIM][MeSO ₃]	234.32	Aldrich (724394), 99%	90%, 94%, 88%			
8	[BMIM][HSO ₄]	236.29	Fluka (57457), 95%	70% (4.0 M), 75%, 85%			
9	[BMIM][SCN]	197.30	Aldrich (724408), 95%	95%, 86%, 93%			
10	[BMIM][dca]	205.26	Anion-exchange method, ³ 99%	95%, 99%, 97%			
11	[BMIM][NO ₃]	201.22	Anion-exchange method, ³ 99%	98%, 90%, 91%			
12	[BMIM][MeSO ₄]	250.32	Alfa Aesar (H27754), 99%	101%, 97%, 95%			
13	$[BMIM][Me_2PO_4]$	264.17	A modification from literature methods ⁴ ,	128%, 99%, 98%			
			⁵ : refluxing an equal molar equiv. of 1-				
			butylimidazole and trimethylphosphate,				
			in acetonitrile for 12 h; 99%				
14	[BMIM][PF ₆]	284.18	Alfa Aesar (L19086), 98%	104%, 91%, 97%			
15	[BMIM][Tf ₂ N]	419.36	Precipitation method, ³ 99%	100%, 82%, 93%			
Diff	Different cations						
16	[EMIM][OAc]	170.21	Anion-exchange method, ^{1, 2} 99%	93%, 93%, 94%			
5	[BMIM][OAc]	198.26	Fluka (51053), 95%	96%, 95%, 97%			
17	[HMIM][OAc]	226.22	Anion-exchange method, ^{1, 2} 99%	191%, 87%, 93%			
18	$[CH_3(OCH_2CH_2)_3-Et-Im][OAc]$	302.12	See our earlier paper, ³ 99%	163%, 95%, 96%			
19	$[CH_3(OCH_2CH_2)_2-Et_3N][OAc]$	307.00	See our earlier paper, ³ 99%	106%, 102%, 97%			
20	[CH ₃ (OCH ₂ CH ₂) ₃ -Et-Pip][OAc]	319.15	See our earlier paper, ² 99%	122%, 87%, 98%			
Dee	p eutectic solvents(DES)						

Table S1 Ionic liquids and DES for the pretreatment of Avicel PH-101 cellulose

21	Choline chloride/urea (1:2)	See our earlier paper, ⁶ 99%	95%, 96%, 94%
22	Choline chloride/glycerol (1:2)	See our earlier paper, ⁶ 99%	94%, 95%, 99%
23	Choline acetate/glycerol (1:1.5)	See our earlier paper, ⁶ 99%	85%, 90%, 88%

Note: the cellulose recovery over 100% is likely due to the presence of residual ILs as discussed in the main text.

Fig. S1 Enzymatic hydrolysis of Avicel PH-101 pretreated by [BMIM][OAc] (1.0 mL citrate buffer (pH 4.8, 50 mM), 0.02 g pretreated Avicel PH-101, 3.0 mg *Trichoderma reesei* cellulase and 1.0 mg β -glucosidase under gentle agitation at 50 °C); model calculations by the Michaelis–Menten equation (R² = 0.980, 0.975 and 0.971 for hydrolysis of cellulose pretreated by neat, 2.0 M and 1.0 M [BMIM][OAc] respectively).

Fig. S2 Correlation of $V_{\text{max}}/K_{\text{m}}$ (g L⁻¹ h⁻¹) of Avicel PH-101with viscosity *B*-coefficients^{7, 8} of [BMIM]⁺-based ILs (Hofmeister series).

Fig. S3 Correlation of $V_{\text{max}}/K_{\text{m}}$ (g L⁻¹ h⁻¹) of Avicel PH-101with log P values of [BMIM]⁺-based ILs [data references for ILs' log P values: NO₃⁻ and OAc⁻,⁹ BF₄⁻, dca⁻ and Tf₂N⁻,¹⁰ Br⁻ and Cl⁻¹¹, and PF₆⁻¹²].

Fig. S4 TGA scans of Avicel cellulose: A1 — untreated; A2 — regenerated from [BMIM][OAc]; A3 — treated by 2.0 M [BMIM][OAc]; A4 — treated by 1.0 M [BMIM][OAc].

Fig. S5 TGA scans of Avicel cellulose: A1 — untreated; A5 — regenerated from [BMIM][MeSO₃]; A6 — treated by 2.0 M [BMIM][MeSO₃]; A7 — treated by 1.0 M [BMIM][MeSO₃].

Fig. S6 TGA scans of switchgrass: A8 — untreated; A9 — treated by [BMIM][OAc]; A10 — treated by 2.0 M [BMIM][OAc]; A11 — treated by 1.0 M [BMIM][OAc].

Fig. S7 *T. reesei* cellulase adsorption isotherm (4 °C) of Avicel PH-101 pretreated by neat or aqueous choline chloride/glycerol (1:2).

References

- I. Dinarès, C. G. de Miguel, A. Ibáñez, N. Mesquida and E. Alcalde, *Green Chem.*, 2009, 11, 1507-1510.
- 2. S. Tang, G. A. Baker, S. Ravula, J. E. Jones and H. Zhao, *Green Chem.*, 2012, **14**, 2922-2932.
- 3. H. Zhao, G. A. Baker, Z. Song, O. Olubajo, T. Crittle and D. Peters, *Green Chem.*, 2008, 10, 696-705.
- 4. E. Kuhlmann, S. Himmler, H. Giebelhaus and P. Wasserscheid, *Green Chem.*, 2007, **9**, 233-242.
- 5. A. W. T. King, A. Parviainen, P. Karhunen, J. Matikainen, L. K. J. Hauru, H. Sixta and I. Kilpeläinen, *RSC Adv.*, 2012, **2**, 8020-8026.
- 6. H. Zhao, G. A. Baker and S. Holmes, Org. Biomol. Chem., 2011, 9, 1908-1916.
- 7. H. Zhao, J. Chem. Technol. Biotechnol., 2006, 81, 877-891.
- 8. H. Zhao, J. Chem. Technol. Biotechnol., 2006, 81, 1723.
- 9. J. L. Kaar, A. M. Jesionowski, J. A. Berberich, R. Moulton and A. J. Russell, *J. Am. Chem. Soc.*, 2003, **125**, 4125-4131.
- 10. H. Zhao, G. A. Baker, Z. Song, O. Olubajo, L. Zanders and S. M. Campbell, *J. Mol. Catal. B: Enzym.*, 2009, **57**, 149–157.
- 11. L. Ropel, L. S. Belvèze, S. N. V. K. Aki, M. A. Stadtherr and J. F. Brennecke, *Green Chem.*, 2005, 7, 83-90.
- 12. S. H. Lee, T. T. N. Doan, S. H. Ha and Y.-M. Koo, *J. Mol. Catal. B: Enzym.*, 2007, **45**, 57-61.