Electronic Supplementary Information

"On water" catalyst-free, column chromatography-free and atom economical protocol for highly diastereoselective synthesis of a novel class of 3-substituted, 3-hydroxy-2-oxindole scaffolds at room temperature

Pramod B. Thakur^a, Harshadas M. Meshram^{a,*}

^a Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology, Hyderabad 500 007, India. Tel.: +91-40-27191643,

Fax: +91-40-27193275, E-mail: hmmeshram@yahoo.com

Table of contents

Title	Page
General information	
General procedure	S2
Characterization data of Compounds (3a-x)	
Characterization data of Compounds (5a-t)	
¹ <u>H and ¹³C NMR spectra of Compounds (3a-x)</u>	
¹ H and ¹³ C NMR spectra of Compounds (5a-t)	

General Information

All materials used in this study were obtained from commercial supplier and used without further purification as received. All reactions were carried out in an open atmosphere of air. All ¹H and ¹³C NMR spectra were recorded in DMSO d₆ on Avance 300 MHz/Inova 500 MHz spectrometers. Chemical shifts (δ) are reported in parts per million (ppm) relative to either residual TMS (¹H: δ 0.00 ppm, ¹³C: δ 00.00 ppm) or DMSO d₆ (¹H: δ 2.50 ppm, ¹³C: δ 39.43 ppm) as an internal reference. The number of protons (n) for a given resonance is indicated by nH. Coupling constants (*J*) are reported in Hertz (Hz). Peak multiplicity is indicated as follows: s—singlet, d—doublet, t—triplet, q—quartet, br—broad, m—multiplet, dd—doublet of doublet dt—triplet of doublet and br s —broad singlet. Melting points were measured on a BUCHI melting point machine. IR spectra were recorded on Thermo Nicolet FT/IR-5700 spectrometer. Mass spectra were recorded using Waters mass spectrometers. High resolution mass spectrums (HRMS) were recorded using Applied Bio-Sciences HRMS spectrometer at national center for mass spectroscopy-IICT.

General procedure for synthesis of 3-(thiazolidinedione derivatives) substituted, 3hydroxy-2-oxindole frameworks:

Mixture of isatin 1(a-n) (1.0 mmol) and thiazolidinedione derivatives 2(a-c) (1 mmol) was stirred in 5 mL tap water at room temperature for stipulated time (12 h). The progress of the reaction was monitored by TLC as well as by the visualization of the change of color of the reaction mixture from red (at the begning of the reaction) to white (at the end of the reaction). The obtained thick white precipitate was filtered and dried to afford the desired product 3(a-x) in very good yield and purity. All products 3(a-x) were characterized by NMR, Mass and IR spectroscopic techniques.

General procedure for synthesis of 3-(oxindole derivatives) substituted, 3-hydroxy-2oxindole frameworks:

Mixture of isatin 1(a-i) (1.0 mmol) and oxindole derivatives 4(a-c) (1 mmol) was stirred in 5 mL tap water at room temperature for stipulated time (24 h). The progress of reaction was monitored by TLC as well as by the visualisation of the change of colour of reaction mixture from red (at the begning of the reaction) to white (at the end of the reaction). The obtained thick white precipitate was filtered and dried to afford the desired product 5(a-t) in very good yield and purity. All products 3(a-x) were characterized by NMR, Mass and IR spectroscopic techniques.

Spectral data for synthesized compounds (3a-3x) :

5-(3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3a**, Table 2, entry 1): Yield: 98 %, dr 100:00, Time, 12 h, White solid, mp 164-166 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 11.46 (br s, 1H), 10.20 (s, 1H), 7.57 (d, *J*=7.4 Hz, 1H), 7.16 (t, *J*=7.7 Hz, 1H), 6.87 (t, *J*=7.6 Hz, 1H), 6.78 (d, *J*=7.7 Hz, 1H), 6.59 (s, 1H), 4.94 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 175.8, 171.2, 170.9, 141.8, 129.7, 126.2, 123.9, 121.4, 109.8, 74.4, 57.7 ppm. IR (KBr) v=3217, 2758, 1695, 1621, 1472, 1327, 1190, 1113, 754 cm⁻¹. MS (ESI) *m/z* 265 [M+H]⁺. HRMS (ESI): *m/z* calcd. for C₁₁H₈O₄N₂SNa [M+Na]⁺=287.00970, found 287.00995.

5-(5-fluoro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3b**, Table 2, entry 2): Yield 99 %, dr 100:00, Time 12 h, White solid, mp 194-196 °C. ¹H NMR (300 MHz, DMSO d₆): δ 11.89 (br s, 1H), 10.55 (s, 1H), 7.34 (dd, *J*=8.1, 2.5 Hz, 1H), 7.05 (dt, *J*=9.1, 2.8 Hz, 1H), 7.01 (s, 1H), 6.84-6.79 (m, 1H), 5.01 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 175.5, 173.9, 171.8, 159.1, 156.0, 138.8, 128.9, 128.8, 116.9, 116.6, 111.9, 111.6, 111.0, 110.9, 74.7, 58.6 ppm. IR (KBr) v=3381, 3306, 3189, 2924, 1766, 1724, 1677, 1485, 1322,

1199, 1143, 1081, 738 cm⁻¹. MS (ESI) m/z 305 [M+Na]⁺. HRMS (ESI): m/z calcd. for C₁₁H₇O₄N₂FNa [M+Na]⁺=305.00028, found 305.00032.

5-(5-chloro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3c, Table 2, entry 3): Yield: 98 %, dr 100:00, Time, 12 h, White solid, mp 120-122 °C. ¹H NMR (300 MHz, DMSO d₆): δ 11.72 (br s, 1H), 10.49 (s, 1H), 7.62 (s, 1H), 7.25 (s, 1H), 7.06-6.74 (m, 2H), 5.05 (s, 1H) ppm. ¹³C NMR (125 MHz, DMSO d₆): δ 175.3, 174.0, 171.6, 141.6, 130.3, 129.3, 125.7, 124.2, 111.6, 74.7, 58.2, ppm. IR (KBr) v=3585, 3399, 3318, 3110, 3046, 2928, 2767, 1736, 1689, 1618, 1479, 1322, 1173, 1123, 1093, 830, 726, 568 cm⁻¹. MS (ESI) *m/z* 316 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. For C₁₁H₁₁O₄N₃ClS [M+NH₄]⁺= 316.01588, found 316.01601.

5-(5-bromo-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3d**, Table 2, entry 4): Yield: 98 %, dr 100:00, Time, 12 h, White solid, mp 174-176 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 11.58 (br s, 1H), 10.37 (s, 1H), 7.75 (s, 1H), 7.36 (s, 1H), 6.99-6.40 (m, 2H), 5.03 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 175.4, 171.4, 171.0, 141.9, 132.6, 129.3, 127.0, 113.0, 111.7, 74.3, 58.4 ppm. IR (KBr) v=3303, 3177, 3111, 2911, 1767, 1730, 1667, 1619, 1450, 1369, 1337, 1175, 1154, 1078, 712, 559 cm⁻¹. MS

(ESI) m/z 360 $[M+NH_4]^+$. HRMS (ESI): m/z calcd. for $C_{11}H_{11}O_4N_3BrS$ $[M+NH_4]^+=$ 359.96536, found 359.96549.

5-(3-hydroxy-5-iodo-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3e**, Table 2, entry 5): Yield: 99 %, dr 100:00, Time, 12h, White solid, mp 188-190 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 11.60 (br s, 1H), 10.27 (s, 1H), 7.91 (d, *J*=1.5 Hz, 1H), 7.56 (dd, *J*=8.5, 1.8 Hz, 1H), 6.70 (s, 1H), 6.67 (s, 1H), 5.01 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 175.3, 171.5, 171.2, 142.5, 138.6, 132.6, 129.8, 112.7, 83.7, 74.1, 58.5 ppm. IR (KBr) v=3306, 3170, 3125, 30580, 2907, 2727, 1767, 1727, 1667, 1617, 1447, 1367, 1334, 1174, 1151, 1076, 709, 555 cm⁻¹. MS (ESI) *m/z* 413 [M+Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₁H₇O₄N₂ISNa [M+Na]⁺=412.90634, found 412.90662.

5-(4,7-dichloro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3f**, Table 2, entry 6): Yield: 100 %, dr 100:00, Time, 12h, White solid, mp 194-196 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.97 (br s, 1H), 7.61 (s, 1H), 7.25 (d, *J*=8.4 Hz, 1H), 6.95 (d, *J*=8.4 Hz, 1H), 6.12 (s, 1H), 5.27 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 174.1, 173.4, 169.4, 141.9, 141.8, 131.4, 129.2, 123.7, 113.9, 78.6, 50.5 ppm. IR (KBr) v=3416, 3365, 3307, 2930, 1765, 1747, 1672, 1616, 1306, 1150, 1082, 804, 698 cm⁻¹. MS (ESI) *m/z* 350 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. for C₁₁H₁₀O₄N₃Cl₂S[M+NH₄]⁺= 349.97691, found 349.97704.

5-(3-hydroxy-5-nitro-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3g**, Table 2, entry 7): Yield 99 %, dr 100:00, Time 12 h, White solid, mp 196-198 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 11.53 (br s, 1H), 10.91 (s, 1H), 8.50 (d, *J*= 1.8 Hz, 1H), 8.21 (dd, *J*= 8.4, 1.8 Hz, 1H), 6.99 (d, *J*= 8.4 Hz, 1H), 6.89 (br s, 1H), 5.10 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 175.0, 170.1, 169.5, 147.7, 140.7, 126.5, 125.8, 118.7, 108.8, 72.6, 57.1 ppm. IR (KBr) v=3365, 3286, 1750, 1679, 1627, 1530, 1340, 1110, 721, 674 cm⁻¹. MS (ESI) *m/z* 327 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. C₁₁H₁₁O₆N₄S[M+NH₄]⁺= 327.03993, found 327.04004.

5-(3-hydroxy-5-methyl-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3h**, Table 2, entry 8): Yield 93 %, dr 100:00, Time 12 h, Grey white solid, mp 206-208 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 11.59 (br s, 1H), 10.10 (s, 1H), 7.45 (s, 1H), 7.05 (d, *J*=8.1 Hz, 1H), 6.75 (d, *J*= 7.7 Hz, 1H), 6.49 (br s, 1H), 5.00 (s, 1H), 2.28 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 174.5, 170.1, 169.9, 138.7, 128.9, 128.8, 125.7, 123.4, 108.2, 73.0, 57.1, 19.2 ppm. IR (KBr) v=3361, 3309, 3183, 3099, 2913, 1765, 1719, 1668, 1628, 1494, 1369, 1341, 1144, 1082, 805, 731, 552 cm⁻¹. MS (ESI) *m/z* 296 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. for C₁₂H₁₄O₄ N₃S [M+H]⁺= 296.07050, found 296.07069.

5-(3-hydroxy-2-oxo-1-phenylindolin-3-yl) thiazolidine-2,4-dione (**3i**, Table 2, entry 9): Yield 99 %, dr 100:00, Time 12 h, White solid, mp 176-178 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 7.80 (d, *J*= 7.3 Hz, 1H), 7.61-7.37 (m, 5H), 7.28 (t, *J*= 7.7 Hz, 1H), 7.08 (t, *J*= 7.7 Hz, 1H), 7.01 (br s, 1H), 6.73 (d, *J*= 8.1 Hz, 1H), 5.2 (s, 1H), 4.71 (br s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 174.1, 171.4, 171.1, 143.7, 133.5, 130.0, 129.0, 127.8, 126.2, 125.6, 124.3, 122.7, 109.1, 74.4, 58.7 ppm. IR (KBr) v=3289, 3060, 2904, 2796, 1752, 1713, 1682, 1610, 1502, 1464, 1382, 1330, 1163, 1085, 758, 699, 635 cm⁻¹. MS (ESI) *m/z* 363 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₇H₁₂O₄N₂SNa [M+Na]⁺=363.04100, found 363.04083.

5-(5-bromo-3-hydroxy-1-(hydroxymethyl)-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3j**, Table 2, entry 10): Yield 92 %, dr 100:00, Time 12 h, White solid, mp 170-172 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 11.66 (br s, 1H), 7.82 (s, 1H), 7.47 (d, *J*=8.1 Hz, 1H), 7.04 (d, *J*=8.1 Hz, 1H), 6.89 (br s, 1H), 5.95 (br s, 1H), 5.36-5.10 (m, 2H), 5.07 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 173.7, 171.3, 171.0, 142.0, 132.9, 128.3, 127.2, 114.5, 111.7, 74.3, 63.3, 58.5 ppm. IR (KBr) v=3539, 3391, 3287, 3066, 2964, 2893, 1734, 1693, 1610, 1484, 1420, 1340, 1262, 1155, 1032, 820, 645, 538 cm⁻¹. MS (ESI) *m/z* 392 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. for C₁₂H₁₃O₅N₃BrS [M+NH₄]⁺= 391.97388, found 391.97407.

3-benzyl-5-(3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3k**, Table 2, entry 11): Yield 96 %, dr 100:00, Time, 12 h, Light orange solid, mp 96-98 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 10.38 (s, 1H), 7.55 (d, *J*=7.6 Hz, 1H), 7.24 (t, *J*=7.4 Hz, 1H), 7.18-7.02 (m, 3H), 6.86 (s, 1H), 6.84-6.81 (m, 2H), 6.69 (d, *J*=7.2 Hz, 2H), 5.10 (s, 1H), 4.56-4.40 (m, 2H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.0, 170.5, 169.5, 142.4, 134.3, 130.1, 128.2, 128.0, 126.9, 126.3, 124.4, 121.5, 110.0, 74.5, 57.2, 43.9 ppm. IR (KBr) v=3292, 1720, 1684, 16212, 1386, 1340, 1150, 1078, 966, 756, 699, 618 cm⁻¹. MS (ESI) *m/z* 377 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₈H₁₄O₄N₂SNa [M+Na]⁺=377.05665, found 377.05661.

3-benzyl-5-(5-chloro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (31, Table 2, entry 12):

Yield 97 %, dr 100:00, Time, 12 h, Light orange solid, mp 150-152 °C. ¹H NMR (500 MHz, CDCl₃+DMSO d₆): δ 10.39 (s, 1H), 7.49 (s, 1H), 7.36-7.28 (m, 1H), 7.20-7.13 (m, 3H), 6.90 (d, *J*=6.3 Hz, 1H), 6.82 (s, 1H), 6.80 (s, 1H), 6.74 (s, 1H), 5.08 (s, 1H), 4.60-4.45 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 175.7, 170.7, 169.7, 141.5, 134.7, 130.4, 128.6, 128.3, 127.8, 127.2, 126.2, 125.8, 124.5, 111.6, 74.5, 57.3, 44.0 ppm. IR (KBr) v=3196, 1715, 1689, 1620, 1385, 1335, 1178, 1153, 823, 699 cm⁻¹. MS (ESI) *m/z* 406 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. for C₁₈H₁₇O₄N₃ClS [M+Na]⁺= 406.06283, found 406.06304.

3-benzyl-5-(5-bromo-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3m**, Table 2, entry 13): Yield 98 %, dr 100:00, Time, 12 h, Light orange solid, mp 146-148 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 10.28 (s, 1H), 7.63 (s, 1H), 7.42 (s, 1H), 7.29 (d, *J*=8.1 Hz, 1H), 7.22-7.14 (m, 2H), 6.85 (d, *J*=7.6 Hz, 2H), 6.81 (s, 1H), 6.70 (d, *J*=8.3 Hz, 1H), 5.08 (s, 1H), 4.62-4.44 (m, 2H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 175.5, 170.2, 169.2, 141.6, 134.1, 132.8, 128.4, 128.1, 127.2, 127.1, 126.4, 113.5, 111.6, 74.5, 56.9, 43.9 ppm. IR (KBr) v=3333, 1714, 1677, 1617, 1385, 1334, 1148, 1083, 1026, 820, 700 cm⁻¹. MS (ESI) *m/z* 455 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₈H₁₃O₄N₂BrSNa[M+Na]⁺=454.96716, found 454.96719.

3-benzyl-5-(3-hydroxy-5-iodo-2-oxoindolin-3-yl)thiazolidine-2.4-dione (3n, Table 2, entry 14): Yield 99 %, dr 100:00, Time, 12 h, White solid, mp 148-150 °C. ¹H NMR (300 MHz, DMSO d₆) δ 10.51 (s, 1H), 7.79 (s, 1H), 7.49 (d, J=7.9 Hz, 1H), 7.29-7.07 (m, 3H), 7.01 (s, 1H), 6.82-6.68 (m, 2H), 6.61 (d, J=8.3 Hz, 1H), 5.08 (s, 1H), 4.51 (s, 2H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 175.3, 170.3, 169.3, 142.2, 138.7, 134.3, 132.8, 128.3, 127.0, 126.2, 126.1, 112.2, 83.9, 74.3, 57.1, 44.0 ppm. IR (KBr) v=3381, 3246, 1716, 1677, 1612, 1385, cm^{-1} . $[M+NH_4]^+$. 1332. 819. MS (ESI) m/z498 HRMS 771 (ESI): m/zcalcd. for $C_{18}H_{17}O_4N_3IS = [M+NH_4]^+ = 497.99790$, found 497.99884.

3-benzyl-5-(3-hydroxy-5-nitro-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3o**, Table 2, entry 15): Yield 99 %, dr 100:00, Time 12 h, Pale yellow solid, mp 176-178 °C. ¹H NMR (500 MHz, CDCl₃+DMSO d₆): δ 11.08 (s, 1H), 8.21 (d, *J*=2.2 Hz, 1H), 8.03 (dd, *J*=8.8, 2.2 Hz, 1H), 7.20 (s, 1H), 7.14-7.09 (m, 1H), 7.02 (t, *J*=7.7 Hz, 2H), 6.91-6.76 (m, 3H), 5.11 (s, 1H), 4.52-4.42 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 176.2, 170.1, 169.4, 148.9, 141.6, 134.3, 127.8, 127.4, 127.3, 127.1, 127.0, 119.7, 109.8, 73.8, 56.8, 44.0 ppm. IR (KBr) v=3285, 2941, 1731, 1682, 1625, 1525, 1396, 1342, 1304, 1110, 1076, 702, 611 cm⁻¹. MS (ESI) *m/z* 417 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. for C₁₈H₁₇O₆N₄S [M+NH₄]⁺= 417.08688, found 417.08703.

3-benzyl-5-(3-hydroxy-5-methyl-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3p**, Table 2, entry 16): Yield 91 %, dr 100:00, Time 12 h, Brown solid, mp 310-312 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.18 (s, 1H), 7.53-6.75 (m, 8H), 5.01 (s, 1H), 4.76 (s, 1H), 4.60-4.43 (m, 2H), 2.14 (s, 3H) ppm. δ 174.5, 171.5, 170.1, 138.7, 129.0, 128.8, 127.8, 127.0, 126.9, 126.7, 126.6, 123.4, 108.2, 74.4, 58.2, 43.6, 20.1 ppm. IR (KBr) v=3259, 2925, 1737, 1684, 1628, 1494, 1386, 1338, 1152, 1101, 964, 782, 699, 621 cm⁻¹. MS (ESI) *m/z* 391 [M+Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₉H₁₆O₄N₂SNa [M+Na]⁺=391.07230, found 391.07202.

3-benzyl-5-(1-benzyl-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3q**, Table 2, entry 17): Yield 88 %, dr 100:00, Time 12 h, Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 7.57 (d, *J*=7.3 Hz, 1H), 7.39 (d, *J*=7.0 Hz, 2H), 7.35-7.18 (m, 6H), 7.10-7.00 (m, 2H), 6.85 (t, *J*=7.7 Hz, 1H), 6.65 (d, *J*=7.7 Hz, 2H), 6.62 (s, 1H), 5.23 (s, 1H), 4.67 (s, 2H), 4.1 (s, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 174.5, 171.0, 169.5, 143.0, 135.2, 134.3, 128.1, 127.9, 127.8, 127.4, 126.9, 126.6, 124.2, 122.1, 109.2, 74.1, 57.1, 44.3, 33.5 ppm. IR (KBr) v=3145, 1716, 1611, 1388, 1102, 898, 742 cm⁻¹. MS (ESI) *m/z* 444 [M]⁺. HRMS (ESI): *m/z* calcd. for C₂₅H₂₀O₄N₂S[M]⁺= 444.11438, found 444.11451

3-benzyl-5-(1-benzyl-5-bromo-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (**3r**, Table 2, entry 18): Yield 90 %, dr 100:00, Time 12 h, White solid, mp 164-166 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 7.66 (s, 1H), 7.43-7.31 (m, 6H), 7.19-7.08 (m, 4H), 6.86 (d, *J*=5.9 Hz, 2H), 6.39 (d, *J*=8.1 Hz, 1H), 5.17 (s, 1H), 4.91 (s, 2H), 4.53 (s, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 174.8, 170.6, 169.7, 142.4, 134.8, 134.3, 133.3, 128.7, 128.6, 128.5, 127.7, 127.6, 127.3, 115.2, 111.1, 74.8, 57.1, 44.7, 33.8 ppm. IR (KBr) v=3328, 2927, 1718, 1678, 1612, 1430, 1334, 1150, 1080, 698 cm⁻¹. MS (ESI) *m/z* 542 [M+NH₄]⁺. HRMS (ESI): *m/z* calcd. For C₂₅H₂₃O₄N₃BrS [M+NH₄]⁺= 542.05722, found 542.05736.

3-hydroxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (**3s**, Table 2, entry 19): Yield 98 %, dr 100:00, Time, 12 h, White solid, mp 328-330 °C. ¹H NMR (300 MHz, DMSO d₆): δ 12.97 (br s, 1H), 10.60 (s, 1H), 7.48 (d, *J*=7.4 Hz, 1H), 7.27 (d, *J*=7.7 Hz, 1H), 6.98 (s, 1H), 6.95 (t, *J*=7.4 Hz, 1H), 6.83 (d, *J*=7.7 Hz, 1H), 5.20 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 203.5, 175.8, 174.2, 142.7, 130.7, 127.4, 124.3, 122.0, 110.3, 74.8, 62.0 ppm. IR (KBr) v=3363, 3170, 3082, 2949, 2887, 1708, 1616, 1455, 1227, 1179, 1084, 758, 667, 550 cm⁻¹. MS (ESI) *m/z* 303 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₁H₈O₃N₂S₂Na[M+Na]⁺=302.98685, found 302.98663.

5-fluoro-3-hydroxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (**3t**, Table 2, entry 20): Yield 99 %, dr 100:00, Time 12 h, White solid, mp 184-186 °C. ¹H NMR (300 MHz, DMSO d₆): δ 13.04 (br s, 1H), 10.65 (s, 1H), 7.28-7.24 (m, 1H), 7.18-7.14 (m, 1H), 7.13 (s, 1H), 6.86-6.22 (m, 1H), 5.21 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 203.3, 175.5, 173.9, 159.1, 156.0, 138.8, 129.0, 128.8, 116.9, 116.6, 111.9, 111.6, 111.0, 110.9, 74.7, 61.6 ppm. IR (KBr) v=3241, 3064, 2950, 2950, 2881, 1702, 1487, 1455, 1313, 1220, 1189, 1083, 824, 782, 665, 581, 512 cm⁻¹. MS (ESI) *m/z* 376 [M+H]⁺. HRMS (ESI): *m/z* calcd. for C₁₁H₇O₃N₂FS₂Na[M+Na]⁺=320.97743, found 320.97757.

5-chloro-3-hydroxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (**3u**, Table 2, entry 21): Yield 98 %, dr 100:00, Time 12 h, Pale yellow solid, mp 176-178 °C. ¹H NMR (500 MHz, DMSO d₆): δ 13.08 (br s, 1H), 10.45 (s, 1H), 7.46 (s, 1H), 7.33 (d, *J*= 6.5 Hz, 1H), 7.14 (s, 1H), 6.86 (d, *J*= 7.3 Hz, 1H), 5.19 (s, 1H) ppm. ¹³C NMR (125 MHz, DMSO d₆): δ 205.2, 176.6, 175.3, 141.6, 130.3, 129.3, 125.7, 124.2, 111.7, 74.7, 61.6 ppm. IR (KBr) v=3263, 3162, 3076, 2871, 1778, 1703, 1615, 1446, 1234, 1183, 1082, 883, 823, 682, 512 cm⁻¹. MS (ESI) *m/z* 314 [M]⁺. HRMS (ESI): *m/z* calcd. for C₁₁H₇O₃N₂ClS₂[M+H]⁺= 313.95866, found 313.95873.

3-hydroxy-5-methoxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (3v, Table 2, entry 22):

Yield 99 %, dr 100:00, Time 12 h, White solid, mp 140-142 °C. ¹H NMR (500 MHz, DMSO d₆): δ 13.07 (br s, 1H), 10.42 (s, 1H), 7.11 (d, *J*=1.8 Hz, 1H), 6.99 (s, 1H), 6.84 (dd, *J*=8.3, 1.8 Hz, 1H), 6.75 (d, *J*=8.4 Hz, 1H), 5.15 (s, 1H), 4.25 (s, 3H) ppm. ¹³C NMR (125 MHz, DMSO d₆): δ 200.2, 176.6, 174.0, 153.6, 135.7, 128.3, 115.1, 110.7, 110.5, 74.8, 61.8, 55.4 ppm. IR (KBr) v=3255, 3163, 3086, 2960, 1778, 1703, 1609, 1494, 1451, 1230, 1187, 1082, 817, 682, 512 cm⁻¹. MS (ESI) *m/z* 333[M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₂H₁₀O₄N₂S₂Na[M+Na]⁺=332.99742, found 332.99734.

3-hydroxy-5-methyl-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (**3w**, Table 2, entry 23): Yield 96 %, dr 100:00, Time 12 h, Grey white solid, mp 344-346 °C. ¹H NMR (300 MHz, DMSO d₆): δ 12.97 (br s, 1H), 10.51 (s, 1H), 7.30 (s, 1H), 7.07 (d, *J*=7.7 Hz, 1H), 6.93 (s, 1H), 6.72 (d, *J*=7.9 Hz, 1H), 5.16 (s, 1H), 2.21 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 202.6, 175.8, 174.0, 140.2, 130.7, 130.5, 127.4, 124.7, 109.8, 74.7, 61.8, 20.7 ppm. IR (KBr) v=3257, 3070, 2884, 1708, 1490, 1454, 1226, 1082, 822 cm⁻¹. MS (ESI) *m/z* 317 [M+ Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₂H₁₀O₃N₂S₂Na[M+Na]⁺=317.00250, found 317.00244.

3-hydroxy-1-methyl-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (**3x**, Table 2, entry 24): Yield 99 %, dr 100:00, Time 12 h, White solid, mp 116-118 °C. ¹H NMR (300 MHz, DMSO d₆): δ 13.12 (br s, 1H), 7.53 (d, *J*=7.8 Hz, 1H), 7.38 (d, *J*=7.8 Hz, 1H), 7.10-6.98 (m, 3H), 5.24 (s, 1H), 3.14 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 205.1, 176.6, 174.0, 144.0, 130.6, 126.6, 123.7, 122.4, 108.8, 74.2, 62.0, 26.1 ppm. IR (KBr) v=3171, 3078, 2960, 2915, 2868, 1694, 1617, 1443, 1381, 1443, 1235, 1183, 1080, 820, 684 cm⁻¹. MS (ESI) *m/z* 317 [M+Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₂H₁₀O₃N₂S₂Na[M+Na]⁺=317.00250, found 317.00231.

Spectral data for synthesized compounds (5a-5t) :

3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**3a**, Table 3, entry 1): Yield: 99 %, inseparable mixtures of diastereomers, dr 96:04, Time, 24 h White solid, mp >350 °C. ¹H NMR (500 MHz, CDCl₃+DMSO d₆): δ 10.14 (s, 1H), 10.11 (s, 1H), 7.21-7.09 (m, 3H), 6.88 (d, *J*=6.9 Hz, 1H), 6.81-6.69 (m, 3H), 6.55 (br s, 1H), 6.34 (br s, 1H), 3.97 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 177.0, 174.3, 143.2, 142.5, 129.3, 128.1, 126.1, 125.4, 123.7, 120.9, 109.4, 108.9, 75.5, 51.2 ppm. IR (KBr) v=3334, 3253, 3063, 1731, 1687, 1623, 1470, 1343, 1221, 1114, 1089, 744, 673, 643 cm⁻¹. MS (ESI) *m/z* 303 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₂O₃N₂Na [M+Na]⁺= 303.07456, found 303.07442.

5-fluoro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5b**, Table 3, entry 2): Yield: 99 %, inseparable mixtures of diastereomers, dr 95:05, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.37 (s, 1H), 10.21 (s, 1H), 7.50 (d, *J*=7.3 Hz, 1H), 7.27 (t, *J*=7.2 Hz, 1H), 7.01 (t, *J*=7.0 Hz, 1H), 6.93 (d, *J*=6.6 Hz, 1H), 6.79(d, *J*=8.5 Hz, 2H), 6.70 (d, *J*=6.8 Hz, 1H), 5.90 (br s, 1H), 4.03 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 177.0, 173.9, 158.8, 155.6, 143.3, 138.8, 129.7, 129.8, 128.5, 126.3, 125.3, 121.1, 115.8, 115.5, 111.3, 111.0, 110.3, 110.2, 109.0, 75.7, 51.2 ppm. IR (KBr) v=3318, 3245, 3068, 2892, 2829, 1726, 1688, 1622, 1488, 1471, 1342, 1266, 1228, 1196, 1097, 817, 749, 673, 589 cm⁻¹. MS (ESI) *m/z* 321 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₁O₃N₂FNa [M+Na]⁺=321.06459, found 321.06442.

5-chloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5c, Table 3, entry 3): Yield: 98 %, inseparable mixtures of diastereomers, dr 95:05, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.50 (s, 1H), 10.22 (s, 1H), 7.52 (d, *J*=7.3 Hz, 1H), 7.29 (t, *J*=7.7 Hz, 1H), 7.16 (dd, *J*=8.4, 2.2 Hz, 1H), 7.03 (d, *J*=7.3 Hz, 1H), 6.87-6.67 (m, 3H), 6.04 (s, 1H), 4.01 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.7, 173.8, 143.3, 141.5, 130.1, 129.2, 128.5, 126.4, 125.3, 124.9, 123.7, 121.1, 111.0, 109.0, 75.5, 51.3 ppm. IR (KBr) v=3312, 3260, 1725, 1686, 1620, 1471, 1446, 1340, 1199, 1167, 1098, 818, 746, 668 cm⁻¹. MS (ESI) *m/z* 337 [M+Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₆H₁₁O₃N₂ClNa [M+Na]⁺=337.03504, found 337.03574.

5-bromo-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5d**, Table 3, entry 4): Yield: 99 %, inseparable mixtures of diastereomers, dr 96:04, Time, 24 h White solid, mp >350 °C. ¹H NMR (400 MHz, CDCl₃+DMSO d₆): δ 10.40 (s, 1H), 10.15 (s, 1H), 7.43 (d, *J*=5.5 Hz, 1H), 7.30-7.19 (m, 2H), 7.98 (t, *J*=7.3 Hz, 1H), 6.98 (d, *J*=7.3 Hz, 1H), 6.71 (d, *J*=8.3 Hz, 1H), 6.60 (s, 1H), 6.32 (br s, 1H), 3.99 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 174.9, 172.0, 141.2, 139.8, 128.3, 127.4, 126.7, 124.6, 123.5, 123.1, 121.9, 119.3, 109.1, 107.2, 73.7, 49.5 ppm. IR (KBr) v=3278, 1727, 1685, 1620, 1472, 1340, 1220, 1166, 1099, 818, 750, 666 cm⁻¹. MS (ESI) *m/z* 381 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₁O₃N₂BrNa [M+Na]⁺=380.98507, found 380.98541.

3-hydroxy-5-iodo-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5e**, Table 3, entry 5): Yield: 99 %, inseparable mixtures of diastereomers, dr 95:05, Time, 24 h White solid, mp >350 °C. ¹H NMR (500 MHz, CDCl₃+DMSO d₆): δ 10.31 (s, 1H), 10.12 (s, 1H), 7.41 (d, *J*=7.9 Hz, 1H), 7.34 (d, *J*=4.0 Hz, 1H), 7.22 (t, *J*=7.9 Hz, 1H), 7.95 (t, *J*=6.9 Hz, 1H), 6.79 (d, *J*=7. 9 Hz, 1H), 6.60 (d, *J*=8.9 Hz, 1H), 6.57 (br s, 1H), 6.51 (s, 1H), 3.97 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 175.2, 172.9, 141.8, 141.1, 136.5, 131.2, 129.3, 127.0, 124.8, 123.6, 119.8, 110.6, 107.7, 82.0, 74.3, 49.9 ppm. IR (KBr) v=3321, 3249, 3068, 1737, 1688, 1618, 1469, 1442, 1344, 1199, 1167, 1091, 815, 749, 674, 645 cm⁻¹. MS (ESI) *m/z* 429 [M+Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₆H₁₁O₃N₂INa [M+Na]⁺=428.97120, found 428.97135.

3-hydroxy-5-nitro-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5f**, Table 3, entry 6): Yield: 99 %, inseparable mixtures of diastereomers, dr 95:05, Time, 24 h White solid, mp >350 °C. ¹H NMR (500 MHz, CDCl₃+DMSO d₆): δ 10.91 (br s, 1H), 10.04 (s, 1H), 8.06 (d, *J*=8.0 Hz, 1H), 7.52 (d, *J*=6.0 Hz, 1H), 7.26 (t, *J*=6.0 Hz, 1H), 7.11 (s, 1H), 7.02 (t, *J*=8.0 Hz, 1H), 6.91(d, *J*=9.0 Hz, 1H), 6.78 (d, *J*=8.0 Hz, 1H), 6.75 (s, 1H), 4.08 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.4, 173.6, 149.0, 141.4, 128.7, 128.5, 126.4, 128.3, 124.6, 121.2, 119.2, 109.4, 109.1, 75.0, 51.4 ppm. IR (KBr) v=3453, 3364, 3184, 2880, 1745, 1693, 1626, 1515, 1470, 1335, 1212, 1107, 1087, 979, 756, 648 cm⁻¹. MS (ESI) *m/z* 326 [M+H]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₂O₅N₃[M+H]⁺= 326.07770, found 326.07781.

4,7-dichloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5g, Table 3, entry 7):

Yield: 99 %, inseparable mixtures of diastereomers, dr 98:02, Time, 24 h White solid, mp 182-184 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.78 (s, 1H), 10.58 (br s, 1H), 7.29 (d, J=8.9 Hz, 1H), 7.12 (t, J=6.9 Hz, 1H), 7.03 (d, J=8.9 Hz, 1H), 6.85 (d, J=7.9 Hz, 1H), 6.71 (t, J=7.9 Hz, 1H), 6.46 (s, 1H), 6.04 (br, s 1H), 4.37 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.0, 175.3, 143.1, 142.1, 131.3, 129.5, 128.5, 127.5, 126.5, 123.8, 123.3, 121.2, 113.2, 109.6, 76.8, 48.4 ppm. IR (KBr) v=3176, 3065, 1738, 1688, 1614, 1470, 1413, 1312, 1166, 1098, cm^{-1} . 807, 751. 674. 641 MS (ESI) m/z371 $[M+Na]^+$. HRMS (ESI): m/zcalcd. $C_{16}H_{10}O_{3}N_{2}Cl_{2}Na[M+Na]^{+}=370.99607$, found 370.99631.

3-hydroxy-5-methoxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5h, Table 3, entry 8):

Yield 99 %, inseparable mixtures of diastereomers, dr 98:02, Time 24 h, White solid, mp 236-238 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.21 (s, 1H), 10.19 (s, 1H), 7.51 (d, *J*=7.0 Hz, 1H), 7.27 (t, *J*=7.6 Hz, 1H), 7.02 (t, *J*=7.6 Hz, 1H), 6.79 (d, *J*=7.7 Hz, 1H), 6.73-6.66 (m, 2H), 6.60 (s, 1H), 5.77 (br s, 1H), 4.01 (s, 1H), 3.41 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 177.1, 174.3, 154.3, 143.5, 135.9, 129.4, 128.6, 126.6, 125.8, 121.3, 114.3, 110.8, 110.1, 109.2, 76.0, 55.1, 51.5 ppm. IR (KBr) v=3288, 3066, 2998, 2940, 2891, 2835, 1723, 1617, 1469, 1434, 1337, 1291, 1201, 1152, 1093, 1039, 858, 823, 744, 669, 581 cm⁻¹. MS (ESI) *m/z* 333 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₇H₁₄O₄ N₂Na [M+Na]⁺=333.08458, found 333.08368.

3-hydroxy-5-methyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5i**, Table 3, entry 9): Yield: 96 %, inseparable mixtures of diastereomers, dr 95:05, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.23 (s, 1H), 10.20 (s, 1H), 10.43 (d, *J*=6.3 Hz, 1H), 7.26 (t, *J*=7.4 Hz, 1H), 7.04-6.88 (m, 2H), 6.77 (d, *J*=7.4 Hz, 1H), 6.64 (d, *J*=7.7 Hz, 1H), 6.51 (s, 1H), 6.01 (br s, 1H), 3.98 (s, 1H), 1.96 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 177.1, 174.4, 143.4, 140.3, 129.9, 129.8, 128.5, 128.4, 126.4, 125.9, 124.6, 121.2, 109.3, 109.0, 75.8, 51.3, 20.6 ppm. IR (KBr) v=3320, 1729, 1691, 1624, 1480, 1339, 1209, 1143, 1096, 817, 747, 674 cm⁻¹. MS (ESI) *m/z* 317 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₇H₁₄O₃N₂Na [M+Na]⁺=317.08966, found 317.08960.

5'-chloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5j**, Table 3, entry 10): Yield: 98 %, inseparable mixtures of diastereomers, dr 97:03, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.39 (s, 1H), 10.29 (s, 1H), 7.57 (s, 1H), 7.32 (dd, *J*=8.07, 1.8 Hz, 1H), 7.13 (td, *J*=7.7, 1.1 Hz, 1H), 6.80-6.72 (m, 2H), 6.69 (d, *J*=7.3, Hz, 1H), 6.66 (s, 1H), 6.16 (d, *J*=7.3, Hz, 1H), 4.04 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.9, 173.7, 142.7, 142.3, 129.8, 128.3, 128.0, 126.4, 125.2, 123.5, 121.2, 110.4, 109.8, 75.4, 51.7 ppm. IR (KBr) v=3321, 3266, 3105, 3059, 2854, 1731, 1693, 1621, 1473, 1444, 1333, 1197, 1165, 1115, 1089, 820, 735, 656, 611, 561 cm⁻¹. MS (ESI) *m/z* 337 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₁O₃N₂ClNa [M+Na]⁺=337.03504, found 337.03477.

5'-chloro-5-fluoro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5**k, Table 3, entry 11): Yield: 99 %, inseparable mixtures of diastereomers, dr 96:04, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.47 (s, 1H), 10.36 (s, 1H), 7.53 (s, 1H), 7.36 (dd, *J*=8.3, 2.3 Hz, 1H), 7.01 (td, *J*=9.1, 3.0 Hz, 1H), 6.85 (s, 1H), 6.82-6.74 (m, 2H), 5.82 (dd, *J*=7.6, 2.3 Hz, 1H), 4.05 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.8, 173.5, 158.8, 155.7, 142.3, 138.9, 129.5, 129.4, 128.5, 127.6, 126.5, 125.3, 116.3, 116.0, 111.1, 110.7, 110.6, 110.5, 75.5, 51.6 ppm. IR (KBr) v=3323, 3260, 3059, 2854, 1729, 1694, 1621, 1475, 1330, 1269, 1195, 1146, 1113, 821, 617 cm⁻¹. MS (ESI) *m/z* 355 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₀O₃N₂CIFNa[M+H]⁺= 355.02617, found 355.02632.

5,5'-dichloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5**I, Table 3, entry 12): Yield: 98 %, inseparable mixtures of diastereomers,dr 98:02, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 10.54 (br s, 1H), 10.33 (s, 1H), 7.54 (s, 1H), 7.32 (dd, *J*=7.4, 1.9 Hz, 1H), 7.17 (dd, *J*=8.3, 2.0 Hz, 1H), 6.89-6.66 (m, 3H), 6.04 (s, 1H), 4.04 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 174.9, 172.0, 141.5, 139.7, 128.7, 127.4, 126.7, 124.6, 123.5, 123.1, 121.9, 119.3, 109.2, 107.2, 73.7, 49.5 ppm. IR (KBr) v=3317, 3263, 2853, 1732, 1694, 1621, 1475, 1450, 1329, 1197, 1166, 822, 764, 618, 562 cm⁻¹. MS (ESI) *m/z* 371 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₀O₃N₂Cl₂Na [M+Na]⁺=370.99607, found 370.99625.

5-bromo-5'-chloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5m**, Table 3, entry 13): Yield: 98 %, inseparable mixtures of diastereomers, dr 97:03, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 10.57 (s, 1H), 10.35 (s, 1H), 7.56 (s, 1H), 7.32 (td, *J*=7.4, 1.7 Hz, 2H), 6.85 (s, 1H), 6.84 (d, *J*=8.3 Hz, 1H), 6.75 (d, *J*=8.3 Hz, 1H), 6.19(s, 1H), 4.08 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 176.5, 173.4, 142.2, 142.0, 132.3, 130.1, 128.4, 127.3, 126.5, 126.4, 125.5, 112.7, 111.7, 110.3, 75.3, 51.6 ppm. IR (KBr) v=3264, 1733, 1695, 1619, 1475, 1445, 1327, 1197, 1165, 1197, 816, 617 cm⁻¹. MS (ESI) *m/z* 417 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₀O₃N₂BrCINa[M+Na]⁺= 416.94406, found 416.94384.

5'-chloro-3-hydroxy-5-iodo-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5n**, Table 3, entry 14): Yield: 99 %, inseparable mixtures of diastereomers, dr 96:04, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆) δ 11.21 (s, 1H), 10.36 (s, 1H), 8.14 (dd, *J*= 8.4, 2.2 Hz, 1H), 7.63 (s, 1H), 7.40 (dd, *J*= 8.4, 1.9 Hz, 1H), 7.11 (s, 1H), 6.99 (d, *J*=8.4 Hz, 1H), 6.88 (d, *J*= 2.5 Hz, 1H), 6.80 (d, *J*= 8.1 Hz, 1H), 4.14 (s, 1H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.1, 173.4, 142.4, 142.3, 138.1, 132.1, 130.5, 128.4, 127.6, 126.4, 125.2, 112.2, 110.3, 83.6, 75.2, 51.6 ppm. IR (KBr) v=3285, 3058, 2856, 1732, 1694, 1617, 1473, 1445, 1326, 1196, 1167, 816, 760, 657, 617, 560 cm⁻¹. MS (ESI) *m/z* 440 [M]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₀O₃N₂ ClI[M+H]⁺= 439.94246, found 439.94261.

5'-chloro-3-hydroxy-5-nitro-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5o**, Table 3, entry 15): Yield: 99 %, inseparable mixtures of diastereomers, dr 97:03, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, CDCl₃+DMSO d₆): δ 10.55 (s, 1H), 10.36 (s, 1H), 7.54 (s, 1H), 7.47 (dd, *J*=8.1, 1.8 Hz, 1H), 7.38 (dd, *J*=8.4, 1.8 Hz, 1H), 6.87-6.80 (m, 2H), 6.63 (d, *J*=8.1, Hz, 1H), 6.30 (d, *J*=1.5 Hz, 1H), 4.03 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO d₆): δ 176.0, 172.2, 147.6, 140.0, 127.3, 127.1, 125.0, 124.9, 123.2, 119.8, 117.8, 108.0, 107.7, 73.5, 49.9 ppm. IR (KBr) v=3493, 3389, 3229, 1746, 1699, 1624, 1519, 1476, 1338, 1310, 1167, 1111, 1091, 980, 906, 844, 622, 561 cm⁻¹. MS (ESI) *m/z* 360 [M+H]⁺. HRMS (ESI): *m/z* calcd. for C₁₆H₁₁O₅N₃Cl[M+H]⁺= 360.03872, found 360.03896.

5'-chloro-3-hydroxy-5-methoxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5p**, Table 3, entry 16): Yield: 99 %, inseparable mixtures of diastereomers, dr 97:03, Time, 24 h White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.31 (s, 1H), 10.22 (s, 1H), 7.51 (s, 1H), 7.34 (d, *J*=8.3 Hz, 1H), 6.78 (d, *J*=8.3 Hz, 1H), 6.74-6.65 (m, 3H), 5.71 (s, 1H), 4.02 (s, 1H), 3.44 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.9, 173.9, 154.3, 142.5, 135.9, 129.1, 128.4, 128.0, 126.5, 125.4, 114.2, 110.8, 110.5, 110.3, 75.8, 55.1, 51.8 ppm. IR (KBr) v=3275, 2942, 1732, 1694, 1618, 1494, 1476, 1443, 1331, 1203, 1155, 1090, 819, 663 cm⁻¹. MS (ESI) *m/z* 367 [M+ Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₇H₁₃O₄N₂ClNa [M+Na]⁺=367.04561, found 367.04593.

5'-chloro-3-hydroxy-5-methyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5q**, Table 3, entry 17): Yield: 94 %, inseparable mixtures of diastereomers, dr 96:04, Time 24 h, White solid, mp >350 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.30 (br s, 2H), 7.48 (s, 1H), 7.34 (dd, *J*=8.3, 1.7 Hz, 1H), 6.95 (d, *J*=7.5 Hz, 1H), 6.78 (d, *J*=8.3 Hz, 1H), 6.65 (d, *J*=7.9 Hz, 1H), 6.62 (s 1H), 5.97 (s, 1 H), 4.02 (s, 1H), 1.98 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.9, 173.8, 142.4, 140.2, 130.0, 129.9, 128.3, 128.1, 128.0, 126.4, 125.2, 124.3, 110.3, 109.5, 75.6, 51.6, 20.6 ppm. IR (KBr) v=3272, 2921, 1732, 1695, 1622, 1475, 1329, 1200, 1147, 814, 618 cm⁻¹. MS (ESI) *m/z* 351 [M+Na]⁺. HRMS (ESI): *m/z* calcd. For C₁₇H₁₃O₃N₂ClNa [M+Na]⁺=351.05069, found 351.05010.

3'-hydroxy-3-methyl-1-phenyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5r**, Table 3, entry 18): Yield 99 %, inseparable mixtures of diastereomers, dr 97:03, Time 24 h, White solid, mp 158-160 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.27 (s, 1H), 7.63-7.49 (m, 2H), 7.43-4.35 (m, 3H), 7.32-7.26 (m, 1H), 7.21-7.09 (m, 2H), 6.72 (d, *J*=7.6 Hz, 3H), 6.52 (d, *J*=7.7 Hz, 1H), 6.46 (s, 1H), 5.84 (br s, 1H), 1.73 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.1, 175.4, 143.7, 141.3, 130.6, 130.2, 129.7, 129.4, 129.0, 128.3, 127.3, 126.5, 125.9, 124.7, 124.5, 122.8, 110.9, 108.6, 76.7, 53.5, 15.2 ppm. IR (KBr) v=3215, 3047, 2930, 2880, 1733, 1690, 1614, 1501, 1466, 1375, 1328, 1197, 1111, 752, 699, 628, 596, 488 cm⁻¹. MS (ESI) *m/z* 371 [M+H]⁺. HRMS (ESI): *m/z* calcd. For C₂₃H₁₉O₃N₂ [M+H]⁺=371.13902, found 371.13917.

5'-fluoro-3'-hydroxy-3-methyl-1-phenyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5s**, Table 3, entry 19): Yield 99 %, inseparable mixtures of diastereomers, dr 97:03, Time, 24 h, White solid, mp 194-196 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.34 (s, 1H), 7.67-7.49 (m, 1H), 7.46-7.32 (m, 4H), 7.19 (t, *J*=7.4 Hz, 1H), 7.02 (dt, *J*=8.6, 2.6 Hz, 1H), 6.84-6.69 (m, 4H), 6.59 (d, *J*=7.7 Hz, 1H), 5.45 (br s, 1H), 1.74 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 176.1, 175.2, 158.4, 155.2, 143.4, 138.4, 133.8, 130.0, 129.4, 128.7, 128.1, 126.3, 125.6, 122.5, 115.8, 115.5, 111.8, 111.5, 110.0, 109.9, 108.3, 76.6, 53.7, 15.1 ppm. IR (KBr) v=3424, 3226, 2929, 2879, 1731, 1689, 1605, 1474, 1375, 1324, 1200, 755, 701, 629, 488 cm⁻¹. MS (ESI) *m/z* 411 [M+Na]⁺. HRMS (ESI): *m/z* calcd. for C₂₃H₁₇O₃N₂FNa [M+Na]⁺=411.11154, found 411.11133.

5'-chloro-3'-hydroxy-3-methyl-1-phenyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5t**, Table 3, entry 20): Yield 99 %, inseparable mixtures of diastereomers, dr 97:03, Time 24 h, White solid, mp 178-180 °C. ¹H NMR (300 MHz, DMSO d₆): δ 10.43 (s, 1H), 7.64-7.55 (m, 1H), 7.46-7.35 (m, 4H), 7.22 (dd, *J*=8.3, 1.9 Hz, 2H), 6.81-6.67 (m, 4H), 6.59 (d, *J*=7.9 Hz, 1H), 5.60 (br s, 1H), 1.73 (m, 3H) ppm. ¹³C NMR (75 MHz, DMSO d₆): δ 175.8, 175.1, 143.4, 141.1, 133.7, 130.3, 130.0, 129.4, 129.1, 128.7, 128.1, 126.3, 125.7, 124.4, 124.2, 122.5, 110.6, 108.3, 76.4, 53.8, 14.9 ppm. IR (KBr) v=3242, 2971, 2929, 2879, 1740, 1720, 1692, 1613, 1501, 1464, 1378, 1325, 1193, 1061, 835, 755, 701, 630, 487 cm⁻¹. MS (ESI) *m/z* 405 [M+H]⁺. HRMS (ESI): *m/z* calcd. for C₂₃H₁₈O₃N₂Cl[M+H]⁺=405.10005, found 405.09984.

¹<u>H and ¹³C NMR Spectrum of the synthesized compounds (3a-3x):</u>

5-(3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3a, dr 100:00, Table 2, entry 1)

¹H NMR, 300 MHz, CDCl₃+DMSO d₆

¹³C NMR, 75 MHz, CDCI₃+DMSO d₆

5-(5-fluoro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3b, dr 100:00, Table 2, entry 2)

5-(5-chloro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3c, dr 100:00, Table 2, entry 3)

5-(5-bromo-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3d, dr 100:00, Table 2, entry 4)

5-(3-hydroxy-5-iodo-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3e, dr 100:00, Table 2, entry 5)

5-(4,7-dichloro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3f, dr 100:00, Table 2, entry 6)

5-(3-hydroxy-5-nitro-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3g, dr 100:00, Table 2, entry 7)

¹H NMR, 300 MHz, CDCl₃+DMSO *d*₆

¹³C NMR, 75 MHz, CDCI₃+DMSO d₆

5-(3-hydroxy-5-methyl-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3h, dr 100:00, Table 2, entry 8)

5-(3-hydroxy-2-oxo-1-phenylindolin-3-yl) thiazolidine-2,4-dione (3i, dr 100:00, Table 2, entry 9)

¹³C NMR, 75 MHz, CDCl₃+DMSO d₆

5-(5-bromo-3-hydroxy-1-(hydroxymethyl)-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3j, dr 100:00, Table 2, entry 10)

¹H NMR, 300 MHz, CDCI₃+DMSO d₆

3-benzyl-5-(3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3k, dr 100:00, Table 2, entry 11)

3-benzyl-5-(5-chloro-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3l, dr 100:00, Table 2, entry 12)

3-benzyl-5-(5-bromo-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3m, dr 100:00, Table 2, entry 13)

3-benzyl-5-(3-hydroxy-5-iodo-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3n, dr 100:00, Table 2, entry 14)

3-benzyl-5-(3-hydroxy-5-nitro-2-oxoindolin-3-yl)thiazolidine-2,4-dione (30, dr 100:00, Table 2, entry 15)

3-benzyl-5-(3-hydroxy-5-methyl-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3p, dr 100:00, Table 2, entry 16)

3-benzyl-5-(1-benzyl-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3q, dr 100:00, Table 2, entry 17)

3-benzyl-5-(1-benzyl-5-bromo-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (3r, dr 100:00, Table 2, entry 18)

3-hydroxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (3s, dr 100:00, Table 2, entry 19)

5-fluoro-3-hydroxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (3t, dr 100:00, Table 2, entry 20)

5-chloro-3-hydroxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (3u, dr 100:00, Table 2, entry 21)

¹³C NMR, 75 MHz, DMSO d_6

3-hydroxy-5-methoxy-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (3v, dr 100:00, Table 2, entry 22)

3-hydroxy-5-methyl-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (3w, dr 100:00, Table 2, entry 23)

3-hydroxy-1-methyl-3-(4-oxo-2-thioxothiazolidin-5-yl)indolin-2-one (3x, dr 100:00, Table 2, entry 24)

¹<u>H and ¹³C NMR Spectrum of the synthesized compounds (5a-5t):</u>

3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**3a, dr 96:04**, Table 3, entry 1)

5-fluoro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5b, dr 95:05, Table 3, entry 2)

5-chloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5c, dr 95:05, Table 3, entry 3)

5-bromo-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5d, dr 96:04, Table 3, entry 4)

3-hydroxy-5-iodo-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5e, dr 96:04, Table 3, entry 5)

3-hydroxy-5-nitro-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5f, dr 95:05, Table 3, entry 6)

4,7-dichloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5g, dr 98:02, Table 3, entry 7)

3-hydroxy-5-methoxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5h, dr 98:02, Table 3, entry 8)

3-hydroxy-5-methyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5i, dr 95:05, Table 3, entry 9)

¹³C NMR, 75 MHz, DMSO d₆

5'-chloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5j, dr 97:03, Table 3, entry 10)

5'-chloro-5-fluoro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5k**, **dr 96:04**, Table 3, entry 11)

5,5'-dichloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5l, dr 98:02, Table 3, entry 12)

5-bromo-5'-chloro-3-hydroxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5m**, **dr 97:03**, Table 3, entry 13)

5'-chloro-3-hydroxy-5-iodo-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5n**, **dr 96:04**, Table 3, entry 14)

5'-chloro-3-hydroxy-5-nitro-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (50, dr 97:03, Table 3, entry 15)

Ó **S63**

5'-chloro-3-hydroxy-5-methoxy-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5p, dr 97:03, Table 3, entry 16)

5'-chloro-3-hydroxy-5-methyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5q**, **dr 96:04**, Table 3, entry 17)

3'-hydroxy-3-methyl-1-phenyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (**5r**, **dr 97:03**, Table 3, entry 18)

5'-fluoro-3'-hydroxy-3-methyl-1-phenyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5s, dr 97:03, Table 3, entry 19)

5'-chloro-3'-hydroxy-3-methyl-1-phenyl-1,1',3,3'-tetrahydro-2H,2'H-3,3'-biindole-2,2'-dione (5t, dr 97:03, Table 3, entry 20)

¹H NMR, 300 MHz, DMSO d₆

