SUPPLEMENTARY INFORMATION For

Ni-substituted LaMnO₃ Perovskites for Ethanol Oxidation

Yi-Chen Hou, Ming-Wei Ding, Shih-Kang Liu, Shin-Kuan Wu, and Yu-Chuan Lin*

Department of Chemical Engineering and Materials Science Yuan Ze University, Chungli, Taoyuan 32003, Taiwan

^{*} Corresponding author's Tel.: (886) 3 463 8800 ext. 3554; Fax: (886) 3 455 9373; email: <u>yclin@saturn.yzu.edu.tw</u>

Content

Table

Table S1. Reduction properties of LaMn_{1-y}Ni_yO₃ catalysts.

Figures

Fig. S1. C 1s core level spectra of LaMn_{1-y}Ni_yO₃ perovskites.

Fig. S2. XRD patterns of post-TPR samples.

Fig. S3. TPR profiles of physically mixed LaMnO₃ and LaNiO₃ particles.

Fig. S4. The variations of XPS-derived Ni loading (%), amounts of α - and β -oxygen (µmol/g cat.), and T₅₀ and T₉₅ (°C) of testes LaMn_{1-y}Ni_yO₃ as functions of y values.

Fig. S5. Conversion of ethanol as a function of temperature over physically mixed LaMnO₃ and LaNiO₃ particles.

Fig. S6. Acetaldehyde and carbon dioxide selectivities as functions of temperature over physically mixed LaMnO₃ and LaNiO₃ particles.

Fig. S7. SEM images of as-synthesized and used LaMn_{1-y}Ni_yO₃.

			TPR test	
catalyst		T _{low} peak ^a	$T_{high} peak^b$	T_{high}/T_{low}
y = 0	T (°C)	337	747	
	mmol/g cat.	1.23 (40%)	1.83 (60%)	1.5
y = 0.1	T (°C)	335	783	
	mmol/g cat.	0.92 (31%)	2.05 (69%)	2.2
y = 0.25	T (°C)	397	738	
	mmol/g cat.	1.35 (37%)	2.33 (63%)	1.7
y = 0.4	T (°C)	359	736	
	mmol/g cat.	1.29 (33%)	2.63 (67%)	2.0
y = 1	T (°C)	347	469	
	mmol/g cat.	3.08 (51%)	3.01 (49%)	1.0

Table S1. Reduction properties of LaMn_{1-v}Ni_vO₃ catalysts.

^a Maximum temperature of reduction peak below 500 °C except LaNiO₃ (y = 1), which used 400 °C as the demarcation.

^b Maximum temperature of reduction peak above 500 °C except LaNiO₃ (y = 1), which used 400 °C as the demarcation.

Fig. S1. C 1s core level spectra of LaMn_{1-y}Ni_yO₃ perovskites.

Fig. S2. XRD patterns of post-TPR samples.

Fig. S3. TPR profiles of physically mixed LaMnO₃ and LaNiO₃ particles.

Fig. S4. The variations of XPS-derived Ni loading (%), amounts of α - and β -oxygen (µmol/g cat.), and T₅₀ and T₉₅ (°C) of testes LaMn_{1-y}Ni_yO₃ as functions of y values.

Fig. S5. Conversion of ethanol as a function of temperature over physically mixed LaMnO₃ and LaNiO₃ particles.

Fig. S6. Acetaldehyde and carbon dioxide selectivities as functions of temperature over physically mixed LaMnO₃ and LaNiO₃ particles.

Fig. S7. SEM images of as-synthesized and used LaMn_{1-y}Ni_yO₃.