Supplementary Material (ESI) for Chemical Science

This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Information (ESI)

Surface synergism of Ag-Ni-ZrO₂ nanocomposite for catalytic transfer hydrogenation of bio-derived platform molecules

Amol M. Hengne, Atul V. Malawadkar, Narayan S. Biradar and Chandrashekhar V. Rode*

Chemical Engineering and Process Development Division,

CSIR-National Chemical Laboratory, Pune 411008, India

cv.rode@ncl.res.in

Catalyst Characterization

BET surface area

BET surface area of the Ag, Ni, Ag-Ni and Ru supported on ZrO₂ catalysts was measured by means of N₂ adsorption at 77 K preformed on Autoabsorb 3100 instrument.

X-ray diffraction (XRD) analysis

X-ray diffraction patterns were recorded on a PAnalytical PXRD Model X-Pert PRO-1712, using Ni filtered Cu K α radiation ($\lambda = 0.154$ nm) as a source (current intensity, 30 mA; voltage, 40 kV) and X-celerator detector. The samples were scanned in the 2 θ range of 20–80⁰.

The crystallite size was determined by Scherrer equation.

$\mathbf{D} = \mathbf{k}\lambda/\beta \, \mathbf{Cos} \, \theta$

Transmission electron microscopy (TEM)

The particle size and morphology were studied using transmission electron microscope (HR-TEM), model JEOL 1200 EX. A small amount of the solid sample was sonicated in 2- propanol for 1 min. A drop of prepared suspension was deposited on a Cu grid coated with carbon layer and grid was dried at room temperature before analysis.

ICP Analysis

The sample analysis of metal leaching experiments was carried out by using instrument ICP-OES (Perkin Elmer), the supernatant liquid was evaporated and made up to 25 mL by distilled water.

DR-UV study

The UV–vis diffuse reflectance (DRUV–vis) spectra of the solid samples were recorded in the region 200–800 nm using a spectrophotometer (Shimadzu UV2101 model) with BaSO₄ as the reference material.

H₂-Temprature programmed reduction (H₂-TPR)

TPR experiments of prepared Copper catalysts were also performed on a Chemisoft TPx (Micromertics-2720) In the TPR experiment, a U-tube (Quartz tube) was filled with solid catalyst. This sample holder was positioned in a furnace equipped with a temperature control. A thermocouple was placed in the solid for temperature measurement. Equal quantity of fresh vacuum dried catalyst was taken in the U-tube. Initially, flow of inert gas (Argon) was passed through U-tube to remove the air present in the lines, and heated in Ar atmosphere with a flow rate of 25mL/min to 200^{0} C for 30 min to remove the moisture and surface impurities present on the sample and then it was cooled to room temperature. Ar was replaced by a mixture of 5% H₂ in Ar gas for the TPR experiment with a heating rate of $10 \, ^{\circ}$ C min⁻¹ starting from the room temperature to $700 \, ^{0}$ C and a thermal conductivity detector (TCD) measured the hydrogen uptake.

X-ray photoelectron spectroscopy (XPS)

The software program X-Pert High Score Plus was employed to subtract contribution of copper Kα2 line prior to data analysis. X-ray photoelectron spectra were recorded using an ESCA-3000 (VG Scientific Ltd. England) with a 9 channeltron CLAM4 analyzer under vacuum better than 1

x 140^{-8} Torr, using MgK α radiation (1253.6 eV) and a constant pass energy of 50 eV. The binding energy values were charge-corrected to the C1s signal (284.6 eV).

Sr.No	Catalyst	Surface Area (m²/gm)
1	10% Ag-ZrO2	37
2	20% Ni-ZrO ₂	31
3	10%Ag-20% Ni-ZrO ₂	34
	[Fresh]	
4	10%Ag-20% Ni-ZrO ₂	36
	[Used]	
5	$5\% \text{ Ru/ZrO}_2$	29

Table 1. Surface area of all zirconia supported catalysts

Fig S 1.HR- TEM images of Ag-Ni-ZrO₂

Fig S 2.XPS study of Ag, Ni, Zr and O in a) Ag in Ag-ZrO₂ and Ag-Ni-ZrO₂ b) Ni in Ni-ZrO₂ and Ag-Ni-ZrO₂ c) Zr in Ag-Ni-ZrO₂ d) Oxygen in Ag-Ni-ZrO₂

Fig S 3. Conversion and selectivity pattern for decomposition of formic acid over Ni-ZrO $_2$ and Ag-Ni-ZrO $_2$

Reaction conditions: formic acid (43 mmol); solvent, water (95 mL); temperature, 493 K; N₂ atm; catalyst, 0.5 g; catalyst:substarte ratio, (1:10) reaction time, 5 h.

Fig S 4. Conversion Vs Time profile of lactic acid, Acetol and glycerol over Ag-Ni-ZrO₂ catalyst

Reaction conditions: C3 substrates (Lactic acid, Acetol and glycerol) (43 mmol), formic acid; (43 mmol); solvent, water (90 mL); temperature, 493 K; N_2 atm; catalyst, 0.5 g; catalyst:substarte ratio, (1:10) reaction time, 5 h.

Fig S 5. GC analysis over Ag-Ni-ZrO₂ catalyst

Fig S 6. GC analysis over Ni-ZrO₂ catalyst