# **Supplementary Information**

# Green iodination of arenes using sulphated ceria-zirconia catalysts in polyethylene glycol

Sandeep S. Kahandal,<sup>a</sup> Sandip R. Kale,<sup>a</sup> Manoj B. Gawande,<sup>\*b</sup> Radek Zboril,<sup>b</sup> Rajender S. Varma,<sup>\*c</sup> and Radha V. Jayaram<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, Institute of Chemical Technology (Autonomous), N. Parekh Marg, Matunga, Mumbai 400 019, India,

Email: <u>rv.jayaram@ictmumbai.edu.in</u>; Fax +91(22)24145614

<sup>b</sup>Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Email-<u>mbgawande@yahoo.co.in</u>

<sup>c</sup>Sustainable Technology Division, National Risk Management Research Laboratory, US Environmental Protection Agency, MS 443, 26 West Martin Luther King Drive, Cincinnati, Ohio, 45268, USA Email: <u>Varma.Rajender@epamail.epa.gov</u>

| No | Contents                              | Page No |  |  |
|----|---------------------------------------|---------|--|--|
| A) | Experimental                          | 2       |  |  |
| B) | Characterization data of Catalyst     | 3-12    |  |  |
| C) | UV-Vis spectra of I <sub>2</sub> +PEG | 13      |  |  |
| D) | Mass spectra                          | 15-26   |  |  |
| E) | References                            | 27      |  |  |

# A) Experimental

#### a) Catalyst preparation:

All chemicals were of analytical grade and were used without any further purification. The  $SO_4^{2-}$  /Ce<sub>x</sub>Zr<sub>1-x</sub>O<sub>2</sub>were prepared by the method described by Lee et al.<sup>1-2</sup> Precipitate of Zr(OH)<sub>4</sub> was obtained by adding aqueous ammonia into an 0.25 M solution of zirconium oxychloride at room temperature with vigorous stirring until the pH of the mother liquor reached at 8. The preparation of catalyst doped with Ce and modified with sulphate simultaneously was carried out by adding an acidic aqueous solution of cerium sulphate (Ce(SO<sub>4</sub>)<sub>2</sub>.4H<sub>2</sub>O) to the Zr(OH)<sub>4</sub> followed by drying at 110°C for 24 h and calcined at 650°C for 2 h. The series of catalysts were prepared by varying mol % of cerium (0.02-0.25) added in the catalyst.

#### b) Typical experimental procedure:

In typical reaction procedure of iodination, aniline (2 mmol), molecular iodine (2 mmol) were taken in 25 mL round bottom flask.  $SO_4^{2-}/Ce_{0.07}Zr_{0.93}O_2$  (15 wt %) with 2 mL PEG-200 were added to it. The reaction mixture was stirred for 12 h at room temperature (30 °C). The reaction was continuously monitored by using TLC and gas chromatography. After completion of reaction, 10 mL of ethyl acetate was added to the reaction mass and catalyst was separated by simple filtration. The resulting reaction mass was treated with Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (10 mL) and extracted with ethyl acetate (10 mL). The reaction mixture was then passed through a bed of anhydrous Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the solvent afforded the iodo compound, which was purified by column chromatography on silica gel using a mixture of hexane/EtOAc (80:20). All the structures were confirmed by GC-MS.

# B) Characterization data of the catalysts



a) FT-IR of the  $SO_4^{2-}/Ce_xZr_{(1-x)}O_2$ 

Figure 1. FT-IR spectra of  $SO_4^{2-}/Ce_xZr_{(1-x)}O_2$  catalysts.

FT-IR spectra were recorded for confirming the presence of sulphate ion units on the surface of ceria-zirconia. The intense absorption bands at around 1250, 1222, 1142 and 1096 cm<sup>-1</sup> are assigned to the S-O stretching frequency region for bidentate sulphate ions coordinated to the metal. The former and the latter two bands are assigned to asymmetric and symmetric stretching vibrations of the O=S=O and O-S-O groups respectively. The bands at 1625 and 1635 cm<sup>-1</sup> are assigned to the deformation vibration modes of the adsorbed water.<sup>1</sup> These characteristic bands of bidentate sulphate ions are absent in

unsulfated  $ZrO_2$  and  $CeO_2$ . In sulphated zirconia IR absorption bands were observed at the same region as that of the  $SO_4^{2-}/Ce_xZr_{1-x}O_2$ . In sulphated ceria, slight shift of absorption bands at 1300, 1143, 1196 and 1056 cm<sup>-1</sup> was observed.

# b) TGA-DSC curve of SO<sub>4</sub><sup>2-</sup>/Ce<sub>x</sub>Zr<sub>(1-x)</sub>O<sub>2</sub> catalysts





Temperature (°C)





Figure 2. DSC-TGA curve of a)  $SO_4^{2-}/Ce_{0.02}Zr_{0.98}O_2$  (b)  $SO_4^{2-}/Ce_{0.07}Zr_{0.93}O_2$ (c)  $SO_4^{2-}/Ce_{0.10}Zr_{0.90}O_2$  (d)  $SO_4^{2-}/Ce_{0.15}Zr_{0.85}O_2$  (e)  $SO_4^{2-}/Ce_{0.20}Zr_{0.80}O_2$  (f)  $SO_4^{2-}/Ce_{0.25}Zr_{0.75}O_2$ 

Thermal stability of  $SO_4^{2'}/Ce_xZr_{1-x}O_2$  (x= 0.2-0.25) catalysts was investigated by DSC-TGA thermal analysis. The first weight loss for all the compositions occurs below 200 °C which is due to the loss of physically adsorbed water. The catalysts exhibit good thermal stability and no remarkable weight loss was observed further upto 700 °C. Next prominent weight loss of the catalysts occurs at 700 °C to 900 °C mainly due to decomposition of sulphate species with the evolution of SO<sub>3</sub> (**a**-**f**). The endothermic peaks at 712–785 °C observed in the case of  $SO_4^{2'}/Ce_xZr_{1-x}O_2$  (x=0.2-0.25) samples are due to the evolution of SO<sub>3</sub> from sulphate species bonded to the surface of Ce-doped ZrO<sub>2</sub>. The decomposition temperature depends on the amount of Ce and sulphate species present in the catalyst. The decomposition temperature increases (713-785 °C) with increasing Ce content from 0.02-25 mol%, resulting in increased thermal stability of the surface sulphate species.

#### c) XRD of the Catalysts:



Figure 3. XRD patterns of (a)  $ZrO_2$ , (b)  $CeO_2$ , (c)  $SO_4^{2-}/ZrO_2$ , (d)  $SO_4^{2-}/Ce_{0.02}Zr_{0.98}O_2$ , (e)  $SO_4^{2-}/Ce_{0.07}Zr_{0.93}O_2$ , (f)  $SO_4^{2-}/Ce_{0.10}Zr_{0.90}O_2$ , (g)  $SO_4^{2-}/Ce_{0.15}Zr_{0.85}O_2$  (h)  $SO_4^{2-}/Ce_{0.20}Zr_{0.80}O_2$  (i)  $SO_4^{2-}/Ce_{0.25}Zr_{0.75}O_2$ 

The XRD patterns of sulphated metal oxides and mixed metal oxides with different Ce content are shown in **figure 3.** All the samples were crystalline in nature, wherein CeO<sub>2</sub> forms a solid solution with  $ZrO_2$ .<sup>1-2</sup>  $SO_4^{2-}/Ce_xZr_{1-x}O_2$  (x= 0.02-0.25 mol%) show characteristics peaks of catalytically active tetragonal phase (2 $\theta$  = 30.18° (with 100 as relative intensity) and the peaks located at 34.616°, 35.283°, 50.214°, 50.770°, 59.291°, 60.187°, 62.724° and 74.617°) [**d-i**]. The oxide of cerium (CeO<sub>2</sub>) shows characteristic peaks of fluorite phase whereas  $ZrO_2$  was present in both tetragonal and monoclinic phases (**a-b**). Sulphated zirconia shows characteristic peaks of tetragonal phase which is supposed to be the catalytically active phase (c). **d**) BET surface area and number and relative strength of acid sites by potentiometric method<sup>a</sup>

| Table 1. BEI  | Γ surface are  | a and number | and relative | strength | of acid sit | tes by j | potentiometric | method <sup>a</sup> | with |
|---------------|----------------|--------------|--------------|----------|-------------|----------|----------------|---------------------|------|
| conversion an | nd selectivity | ,            |              |          |             |          |                |                     |      |

| Catalyst                                                               | BET<br>Surface<br>area<br>(m <sup>2</sup> .g <sup>-1</sup> ) | Acidity<br>(mmol/g) <sup>b</sup> | $E_{\rm i}({\rm mV})^{\rm c}$ | Conversion<br>(%) | Selectivity<br>(%) <sup>d</sup> |
|------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-------------------------------|-------------------|---------------------------------|
| ZrO <sub>2</sub>                                                       | 12                                                           | 0.8                              | 55                            | 60                | 93/7                            |
| CeO <sub>2</sub>                                                       | 10                                                           | 0.3                              | 27                            | 45                | 91/9                            |
| SO4 <sup>2-</sup> /ZrO2                                                | 37                                                           | 2.07                             | 168                           | 84                | 96/4                            |
| SO4 <sup>2-</sup> /CeO <sub>2</sub>                                    | 23                                                           | 1.22                             | 154                           | 54                | 85/15                           |
| Ce <sub>0.07</sub> Zr <sub>0.93</sub> O <sub>2</sub>                   | 17                                                           | 1.54                             | 157                           | 43                | 100                             |
| $SO_{4}^{2^{-}}/CeO_{2}^{+}SO_{4}^{2^{-}}/ZrO_{2}^{-}$                 | -                                                            | -                                | -                             | 65                | 88/12                           |
| $SO_4^{2^-}/Ce_{0.02}Zr_{0.98}O_2$                                     | 22                                                           | 3.17                             | 440                           | 80                | 100                             |
| ${\rm SO}_4^{2-}/{\rm Ce}_{0.07}{\rm Zr}_{0.93}{\rm O}_2$              | 53                                                           | 4.23                             | 560                           | 100               | 100                             |
| ${\rm SO_4^{2-}/Ce_{0.10}Zr_{0.90}O_2}$                                | 28                                                           | 3.52                             | 450                           | 82                | 100                             |
| ${\rm SO_4^{2-}/Ce_{0.15}Zr_{0.85}O_2}$                                | 14                                                           | 3.50                             | 460                           | 62                | 98/2                            |
| $SO_4^{2-}/Ce_{0.20}Zr_{0.80}O_2$                                      | 12                                                           | 2.97                             | 248                           | 57                | 95/5                            |
| $SO_4^{2-}/Ce_{0.25}Zr_{0.75}O_2$                                      | 10                                                           | 2.17                             | 197                           | 53                | 95/5                            |
| $SO_4^{2-}/Y_{0.04}Zr_{0.96}O_2$                                       | 34                                                           | 1.23                             | 148                           | 56                | 92/8                            |
| $SO_4^{2-}/Y_{0.08}Zr_{0.92}O_2$                                       | 43                                                           | 1.64                             | 195                           | 54                | 90/10                           |
| SO4 <sup>2-</sup> /Y <sub>0.12</sub> Zr <sub>0.88</sub> O <sub>2</sub> | 52                                                           | 1.93                             | 310                           | 68                | 90/10                           |
| SO4 <sup>2-</sup> /Y <sub>0.16</sub> Zr <sub>0.84</sub> O <sub>2</sub> | 75                                                           | 4.19                             | 530                           | 92                | 94/6                            |
| SO4 <sup>2-</sup> /Y <sub>0.20</sub> Zr <sub>0.80</sub> O <sub>2</sub> | 35                                                           | 2.91                             | 330                           | 69                | 99/1                            |
| SO4 <sup>2-</sup> /Y <sub>0.24</sub> Zr <sub>0.76</sub> O <sub>2</sub> | 29                                                           | 2.65                             | 248                           | 60                | 100                             |

<sup>a</sup>Sulphated ceria-zirconia catalysts are calcined at 650 °C for 2 h. <sup>b</sup>Total number of acid sites determined by n-butylamine potentiometric titration,  ${}^{c}E_{i}$ - Initial electrode potential (mV). <sup>d</sup>(%) Selectivity, para/ortho isomers for iodoanilne synthesis.

BET surface areas of the as synthesized  $SO_4^{2-}/Ce_xZr_{1-x}O_2$  (X=0.02-0.25) catalysts were determined (**Table 1**). The results indicate that both the surface area and acidity (**Figure 4**) are dependent on Ce: Zr ratio of the catalyst.  $SO_4^{2-}/Ce_{0.07}Zr_{0.93}O_2$  has the highest surface area as compared to other compositions of  $SO_4^{2-}/Ce_xZr_{1-x}O_2$ .



Figure 4. Potentiometric titration curves for (a)  $SO_4^{2-}/Ce_{0.02}Zr_{0.98}O_2$  (b)  $SO_4^{2-}/Ce_{0.07}Zr_{0.93}O_2$  (c)  $SO_4^{2-}/Ce_{0.10}Zr_{0.90}O_2$  (d)  $SO_4^{2-}/Ce_{0.25}Zr_{0.85}O_2$  (e)  $SO_4^{2-}/CeO_2$  (f)  $Ce_{0.07}Zr_{0.93}O_2$  (g)  $ZrO_2$  (h)  $SO_4^{2-}/Ce_{0.20}Zr_{0.80}O_2$  (i)  $CeO_2$  (j)  $SO_4^{2-}/ZrO_2$  (k)  $SO_4^{2-}/Ce_{0.15}Zr_{0.85}O_2$ 





Figure 5. SEM-EDX analysis of SO<sub>4</sub><sup>2-</sup>/Ce<sub>0.7</sub>Zr<sub>0.93</sub>O<sub>2</sub>composition

SEM images were recorded using a Tungsten source on JEOL model JSM-6390 instrument. EDX-XAF analysis showed 7 mol% of Ce and 93.0 mol% of Zr in case of  $SO_4^{2-}/Ce_{0.7}Zr_{0.93}O_2$ . The results are in well agreement with the calculations and minimal difference was observed (**Figure 5**).

| No | BET Surface area<br>(m <sup>2</sup> .g <sup>-1</sup> ) | Catalyst                                                                    | Ce/Zr | Surface<br>density of<br>sulphate |
|----|--------------------------------------------------------|-----------------------------------------------------------------------------|-------|-----------------------------------|
| 1  | 22                                                     | $SO_4^{2-}/Ce_{0.02}Zr_{0.98}O_2$                                           | 0.020 | 3.3                               |
| 2  | 53                                                     | ${\rm SO}_4^{2}$ /Ce <sub>0.07</sub> Zr <sub>0.93</sub> O <sub>2</sub>      | 0.075 | 8.1                               |
| 3  | 28                                                     | $\mathrm{SO}_{4}^{2}$ /Ce <sub>0.10</sub> Zr <sub>0.90</sub> O <sub>2</sub> | 0.111 | 7.2                               |
| 4  | 14                                                     | $SO_4^{2-}/Ce_{0.15}Zr_{0.85}O_2$                                           | 0.176 | 5.5                               |
| 5  | 12                                                     | $SO_4^{2-}/Ce_{0.20}Zr_{0.80}O_2$                                           | 0.25  | 5.2                               |
| 6  | 10                                                     | $SO_4^{2-}/Ce_{0.25}Zr_{0.75}O_2$                                           | 0.333 | 5.0                               |
|    |                                                        |                                                                             |       |                                   |

**Table 2.** Surface ratio of Ce/Zr and surface density of sulphate for  $SO_4^{2-}/Ce_xZr_{1-x}O_2$ 

Ce/Zr and surface density of sulphate were determined by EDAX method.

The surface ratio (Ce/Zr) 0.075 showed highest surface density of sulphate in sulphated ceriazirconia. The highest surface density of sulphate resulted in the increase of total number of acidic sites for  $SO_4^{2-}/Ce_{0.07}Zr_{0.93}O_2$  composition. For all the other compositions, the surface densities of sulphate were found to be lower and the total numbers of acid sites are also low.

#### C) (UV-Vis spectra of I<sub>2</sub>+PEG).

The value of  $\lambda_{max}$ = 360 nm for the diatomic I<sub>2</sub> state and whose interatomic distance is a little prolonged by the interaction with solvent molecules<sup>3</sup> (PEG-200,400,600 (b to d). The intensity of  $\lambda_{max}$ = 360 nm for I<sub>2</sub>+Ethanol is very small (e).



**Figure 6,** U.V-Vis spectra for (a) PEG-200 (b) I<sub>2</sub>+PEG-200 (c) I<sub>2</sub>+PEG-400 (d) I<sub>2</sub>+PEG-600 (e) I<sub>2</sub>+Ethanol

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

#### D) Spectral data:

#### **4-Iodo-aniline** (Figure 7)

**GC-MS** (EI, 70 eV): *m/z* (%) = 219 (100 %) [M<sup>+</sup>], 127 (3 %), 109 (10 %), 92 (51 %), 65 (50 %), 52 (5 %)

#### 2, 4-Diiodoaniline (Figure 8)

**GC-MS** (EI, 70 eV): *m/z* (%) = 345 (100 %) [M<sup>+</sup>], 269 (10 %), 218 (25 %), 91 (45 %), 77 (5 %), 63 (22 %), 52 (18 %), 41 (11 %)

#### 2-Nitro-4-iodoaniline (Figure 9)

**GC-MS** (EI, 70 eV): *m/z* (%) = 264 (100 %) [M<sup>+</sup>], 234 (10 %), 218 (30 %), 107 (8 %), 91 (45 %), 63 (20 %), 52 (17 %)

#### **3-Nitro-4-iodoaniline** (Figure 10)

**GC-MS** (EI, 70 eV): m/z (%) = 264 (100 %) [M<sup>+</sup>], 234 (10 %), 218 (28 %), 206 (10 %), 151

(20 %), 91 (95 %), 64 (29 %), 52 (30 %)

# **4-Nitro-2-iodoaniline** (Figure 11)

**GC-MS** (EI, 70 eV): m/z (%) = 264 (100 %) [M<sup>+</sup>], 234 (50 %), 218 (10 %), 91 (80 %), 63 (26 %).

#### **3-Chloro-4-iodoaniline** (Figure 12)

**GC-MS** (EI, 70 eV): *m/z* (%) = 255 (33 %) [M<sup>+</sup>], 253 (100 %), 128 (15 %), 126 (50 %), 99 (28 %), 90 (25 %), 63 (30 %).

# 4-Chloro-2-iodo-aniline (Figure 13)

**GC-MS** (EI, 70 eV): *m/z* (%) = 255 (33 %) [M<sup>+</sup>], 253 (100 %), 128 (15 %), 126 (45 %), 101 (5 %), 99 (23 %), 90 (25 %), 63 (27 %), 52 (8 %).

#### 4-Iododiphenyl amine (Figure 14)

**GC-MS** (EI, 70 eV): m/z (%) = 295 (100 %) [M<sup>+</sup>], 167 (60 %), 139 (15 %), 121 (5 %), 84 (20 %), 65 (5 %), 51 (7 %).

#### **4-Iododiphenyl ether** (Figure 15)

**GC-MS** (EI, 70 eV): *m/z* (%) = 296 (100 %) [M<sup>+</sup>], 141 (45 %), 115 (35 %), 92 (7 %), 77 (25 %), 63 (13 %), 51 (15 %)

#### 4-Iodo-N, N-Dimethylaniline (Figure 16)

**GC-MS** (EI, 70 eV): *m/z* (%) = 247 (100 %) [M<sup>+</sup>], 231 (5 %), 119 (20 %), 105 (10 %), 91 (5 %), 77 (12 %), 63 (8 %), 42 (13 %)

#### 4-Methyl-2-iodoaniline (Figure 17)

**GC-MS** (EI, 70 eV): m/z (%) = 234 (5 %) [M<sup>+</sup>], 107 (3 %), 102 (5 %), 89 (18 %), 87 (73 %),

75 (8 %), 58 (25 %), 45 (100 %), 43 (95).

**4-iodo-anisole** (Figure 18)

**GC-MS** (EI, 70 eV): *m/z* (%) = 234 (7 %) [M<sup>+</sup>], 107 (17 %), 88 (20 %), 75 (10 %), 71 (100 %), 58 (70 %).

# 4-methyl-2-iodo-phenol (Figure 19)

**GC-MS** (EI, 70 eV): m/z (%) = 234 (100 %) [M<sup>+</sup>], 107 (50 %), 77 (40 %), 51 (20 %).

# 4-Tert-butyl-2-iodophenol (Figure 20)

**GC-MS** (EI, 70 eV): m/z (%) = 276 (28 %) [M<sup>+</sup>], 261 (100 %), 233 (8 %), 134 (30 %)

# 2-Hydroxy-5-iodobenzaldehyde (Figure 21)

**GC-MS** (EI, 70 eV): *m/z* (%) = 248 (100 %) [M<sup>+</sup>], 229 (6 %), 219 (8 %), 92 (8 %), 75 (10 %), 65 (23 %), 45 (37 %)

#### 4-chloro-2-iodo-phenol (Figure 22)

**GC-MS** (EI, 70 eV): m/z (%) = 255 (30 %) [M<sup>+</sup>], 254 (100 %), 127 (30 %), 99 (40 %), 63 (39 %).

#### 2, 4-dichloro-6-iodo-phenol (Figure 23)

**GC-MS** (EI, 70 eV): m/z (%) = 289 (60 %) [M<sup>+</sup>], 288 (100 %), 161 (10 %), 133 (40 %), 97

(35 %), 73 (10 %), 62 (30 %).

#### 2,2,4-trimethyl-1,2-dihydroquinoline (Figure 25)

**GC-MS** (EI, 70 eV): (Figure 4.38) *m/z* (%) = 173 (9 %) [M<sup>+</sup>], 158 (100 %), 143 (7 %), 115 (8 %)



Figure 7. Mass spectrum of 4-iodoaniline







Figure 9. Mass spectrum of 2-nitro-4-iodoaniline



Figure 10. Mass spectrum of 3-nitro-4-iodoaniline



Figure 11. Mass spectrum of 4-nitro-2-iodoaniline



Figure 12. Mass spectrum of 3-Chloro-4-iodoaniline



Figure 13. Mass spectrum of 4-Chloro-2-iodoaniline



Figure 14. Mass spectrum of 4-iodo-N-phenylaniline



Figure 15. Mass spectrum of 4-iododiphenyl ether



Figure 16. Mass spectrum of 4-iodo-N,N-dimethylbenzenamine



Figure 17. Mass spectrum of 2-iodo-4-methylaniline



Figure 18. Mass spectrum of 4-iodo-anisole



Figure 19. Mass spectrum of 4-methyl-2-iodo-phenol



20. Mass spectrum of 2-hydroxy-5-iodobenzaldehyde



Figure 21. Mass spectrum of 4-chloro-2-iodo-phenol



Figure 22. Mass spectrum of 2,4 dichloro-4-iodophenol



Figure 23. Mass spectrum of 4-tert-butyl-2-iodophenol



Figure 24. Gas Chromatogram of 2,2,4-trimethyl-1,2-dihydroquinoline (R.T-7.30 min).



Figure 25. Mass spectrum of 2,2,4-trimethyl-1,2-dihydroquinoline

#### **References':**

- 1.J. R. Sohn, S. H. Lee and J. S. Lim, Catalysis Today 2006, 116,143-150.
- 2.J. R. Sohn, J. S. Lim S. H. Lee, Chemistry Letters 2004, 33, 1490-1491
- 3.N. Kaneniwa, A. Ikekawa, H. Hayase, Chem. Pharma. Bull. 1974, 22, 11, 2635-2641.