Supporting information

New synthesis of unsymmetrically-substituted 2,5-diarylpyrroles from homopropargylic sulfonamides

Wim Van Rossom,* Yoshitaka Matsushita, Katsuhiko Ariga, Jonathan P. Hill*

World Premier Internationaal (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044 Ibaraki, Japan

E-mail: wimvanrossom@gmail.com, jonathan.hill@nims.go.jp

Table of contents

1. General experimental methods	S2
2. Experimental and characterization data	S2
3. ¹ H and ¹³ C NMR spectra of pyrroles 5a–d	S 7
4. X-ray crystallographic structure and data for pyrrole 5c	S11

1. General experimental methods

NMR spectra were acquired using a JEOL 300 MHz spectrometer operating at 300.01 MHz and 75 MHz for ¹H and ¹³C, respectively. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane (¹H) or relative to the internal (NMR) solvent signals (for ¹³C spectra). High resolution mass spectroscopic measurements were made on a Shimadzu LCMS-IT-TOF instrument (in ESI mode). Melting points were determined using a Linkam THMS600 apparatus. MPLC flash chromatography was performed using an YFLC W-Prep 2XY apparatus (Yamazen). Chemicals received from commercial sources (specify) were used without further purification. Reaction solvents (*N*,*N*-dimethylformamide, tetrahydrofuran, and toluene; anhydrous, +99.5%) were used as purchased.

2. Experimental and characterization data

N-(4-Methoxybenzylidene)-4-methylbenzenesulfonamide 2. A flame-dried flask was charged with 4anisaldehyde (7.10 mL, 58.4 mmol, 1 equiv), *p*-toluenesulfonamide (10.00 g, 58.4 mmol, 1 equiv), DOWEX (1.0 g) and toluene (200 mL). The reaction mixture was stirred overnight at 150 °C with azeotropic water removal (Dean-Stark). The reaction mixture was cooled to room temperature and partially evaporated under reduced pressure. Heptane was added and the precipitate was filtered. Compound 2 was obtained as a white solid (15.01 g, 89%). This compound has been prepared before by M. Barbarotto *et al.*¹ Material identity was confirmed by mp, MS, ¹H and ¹³C NMR.

Activation of zinc. Zinc powder (27 g) was dispersed in water (40 mL) with ultrasonification. 3M aqueous HCl (100 mL) was added to the resulting suspension with vigorous stirring and the mixture was stirred for 1 h (until gas evolution halted). The resulting activated Zn was filtered, washed with water and acetone, and subsequently dried overnight at 40 °C under vacuum.

N-[1-(4-Methoxyphenyl)-3-butyn-1-yl]-4-methylbenzenesulfonamide 3. Activated Zn (17.00 g, 257.5 mmol, 5 equiv) in dry THF (400 mL) was stirred and cooled to 0 °C under N₂ atmosphere. Propargyl bromide (5.85 mL, 77.2 mmol, 1.5 equiv) was added dropwise and the reaction mixture was stirred for 1 h at rt. *N*-tosylimine 2 (14.90 g, 51.5 mmol, 1 equiv) was dispersed in 100 mL of dry THF and added portion wise to the reaction mixture. After 3 h, a saturated NH₄Cl solution (200 mL) was added and the mixture was left to stir for another 15 min. The reaction mixture was filtered, diluted with EtOAc (200 mL) and washed with saturated NH₄Cl solution (1×) and H₂O (3×). The organic fraction was dried over Na₂SO₄, solvents evaporated and the white solid dried overnight at 40°C under vacuum. Yield: 16.84 g, 99%). M.pt. 104.8 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.62$ (d, J = 8.4 Hz, 2H; Ar-H), 7.20 (d, J = 8.1 Hz, 2H; Ar-H), 7.07 (d, J = 8.7 Hz, 2H; Ar-H), 6.74 (d, J = 9.0 Hz, 2H; Ar-H), 5.07 (d, J = 6.6 Hz, 1H; NH), 4.44 (q, J = 12.9 Hz, J = 6.3 Hz, 1H; benzyl), 3.76 (s, 3H; OMe), 2.62 (dd, J = 6.0 Hz, J = 2.7 Hz, 2H; CH₂), 2.39 (s, 3H; Me), 1.98 (t, J = 2.4 Hz, 1H; acetylene) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 159.3$ (C), 143.4 (C), 137.3 (C), 131.3 (C), 129.5 (CH; Ar-CH), 127.8 (CH; Ar-CH), 127.2 (CH; Ar-CH), 113.8 (CH; Ar-CH), 79.2 (C), 72.0 (CH), 55.2 (OCH₃), 55.1 (CH), 27.1 (CH₂), 21.4 (CH₃) ppm. HRMS (ESI+): calc'd for C₁₈H₁₉NO₃S [M+H]⁺: *m/z* 328.0768; found *m/z* 328.0641.

¹ M. Barbarotto, J. Geist, S. Choppin and F. Colobert, *Tetrahedron-Asymmetr.* 2009, **20**, 2780.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(4-methoxyphenyl)-N-tosylbut-3-yn-1-amine **4a**. General method 1: A flame-dried Schlenk flask was charged with 1,3-bis(trifluoromethyl)-5-bromobenzene (100 uL, 0.57 mmol, 1 equiv), sulfonamide 3 (200 mg, 0.61 mmol, 1.05 equiv), Pd(PPh₃)₂Cl₂ (40 mg, 0.057 mmol, 10 mol%), CuI (22 mg, 0.114 mmol, 20 mol%), dry DMF (2 mL) and piperidine (172 μL, 3 equiv). The mixture was degassed by applying three freeze-pump-thaw cycles then stirred at 80 °C for 20 h. Saturated NH₄Cl solution was added and the mixture was extracted with EtOAc ($3\times$). The combined organic fractions were washed with water ($2\times$), dried over Na₂SO₄ and solvents removed under reduced pressure. The residue was purified by column chromatography (silica, MPLC: hexane-ethyl acetate, gradient 85:15 to 75:25) to obtain compound 4a as a yellowish solid (216 mg, 78%). M.pt. 123.3 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.75$ (s, 1H; Ar-H), 7.68–7.63 (m, 4H; Ar-H), 7.19 (d, J = 7.5 Hz, 2H; Ar-H), 7.09 (d, J = 8.1 Hz, 2H; Ar-H), 6.78 (d, J = 8.1 Hz, 2H; Ar-H), 5.03 (d, J = 3.0 Hz, 1H; NH), 4.55-4.51 (m, 1H; benzyl), 3.77 (s, 3H; OMe), 2.91 (d, J = 5.7 Hz, 2H; CH₂), 2.36 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl_3) : $\delta = 159.5$, 143.5, 137.3, 132.1 (t, J = 1.2 Hz; CF₃), 129.6, 127.7, 127.2, 125.3, 124.7, 121.5, 114.0, 89.2, 81.0 (C), 55.7 (CH), 55.2 (OCH₃), 28.2 (CH₂), 21.3 (CH₃) ppm. HRMS (ESI-): calc'd for C₂₆H₂₁NO₃S [M+H]⁻: *m/z* 541.1152; found *m/z* 541.1101.

4-(4-(Trifluoromethyl)phenyl)-1-(4-methoxyphenyl)-N-tosylbut-3-yn-1-amine 4b. Synthesis according to general method 1: 1-bromo-4-(trifluoromethyl)benzene (300 µL, 1.96 mmol, 1 equiv), sulfonamide **3** (677 mg, 2.06 mmol, 1.05 equiv), Pd(PPh₃)₂Cl₂ (140 mg, 0.19 mmol, 10 mol%), CuI (76 mg, 0.40 mmol, 20 mol%), dry DMF (3 mL), piperidine (580 µL, 5.88 mmol, 3 equiv); purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 85:15 to 75:25). Yield: 67% (620 mg). M.pt 189.8 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.63 (d, *J* = 8.4 Hz, 2H; Ar-H), 7.52 (d, *J* = 8.4 Hz, 2H; Ar-H), 7.37 (d, *J* = 8.4 Hz, 4H; Ar-H), 7.15 (d, *J* = 8.4 Hz, 2H; Ar-H), 7.10 (d, *J* = 8.7 Hz, 2H; Ar-H), 6.76 (d, *J* = 8.4 Hz, 2H; Ar-H), 5.18 (d, *J* = 6.9 Hz, 1H; NH), 4.54 (q, *J* = 12.6 Hz, *J* = 6.3 Hz, 1H; benzyl), 3.77 (s, 3H; OMe), 2.87 (d, *J* = 6.0 Hz, 2H; CH₂), 2.35 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 159.4 (C), 143.4 (C), 137.4 (C), 131.9 (CH), 131.5, 130.1, 129.7, 129.5, 127.8, 127.2, 126.8 (t, *J* = 1.2 Hz; C), 125.7, 125.2 (q, *J* = 8.0 Hz, *J* = 4.2 Hz; CF₃), 122.1, 113.9, 87.6 (C), 82.6 (C), 55.7 (CH), 55.2 (OCH₃), 28.3 (CH₂), 21.3 (CH₃) ppm. HRMS (ESI-): calc'd for C₂₅H₂₂NO₃SF₃ [M+H]⁻: *m/z* 472.1200; found *m/z* 472.1289.

1-(4-Methoxyphenyl)-4-(pyridin-2-yl)-*N***-tosylbut-3-yn-1-amine 4c.** Synthesis according to general method 1: 2-bromopyridine (300 µL, 3.13 mmol, 1 equiv), sulfonamide **3** (1081 mg, 3.28 mmol, 1.05 equiv), Pd(PPh₃)₂Cl₂ (218 mg, 0.31 mmol, 10 mol%), CuI (119 mg, 0.62 mmol, 20 mol%), dry DMF (4 mL), piperidine (928 µL, 9.40 mmol, 3 equiv); stirred at 40 °C for 22 h; purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 50:50 to 40:60). Yield: 77% (987 mg). M.pt. 144.5 °C. ¹H NMR (300 MHz, CDCl₃) δ = 8.53 (d, *J* = 4.8 Hz, 1H; Pyr), 7.65 (d, *J* = 8.1 Hz, 2H; Ar-H), 7.60 (t, *J* = 7.8 Hz, 1H; Pyr), 7.26 (d, *J* = 7.8 Hz, 1H; Pyr), 7.23–7.17 (m, 1H; Pyr), 7.15 (d, *J* = 7.8 Hz, 2H; Ar-H), 7.13 (d, *J* = 8.7 Hz, 2H; Ar-H), 6.76 (d, *J* = 8.4 Hz, 2H; Ar-H), 5.29 (s_{br}, 1H; NH), 4.54 (q, *J* = 12.9 Hz, *J* = 6.3 Hz, 1H; benzyl), 3.75 (s, 3H; OMe), 2.87 (d, *J* = 6.3 Hz, 2H; CH₂), 2.35 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.3, 149.9, 143.3, 143.1, 137.4, 136.1, 131.6, 129.5, 127.8, 127.2, 127.1, 122.8, 113.9, 85.3 (C), 83.4 (C), 55.5 (CH), 55.2 (OCH₃), 28.1 (CH₂), 21.3 (CH₃) ppm. HRMS (ESI+): calc'd for C₂₃H₂₂N₂O₃S [M+H]⁺: *m/z* 407.1424; found *m/z* 407.1371

1-(4-Methoxyphenyl)-4-phenyl-*N***-tosylbut-3-yn-1-amine 4d.** Synthesis according to general method 1: iodobenzene (150 μL, 3.13 mmol, 1 equiv), sulfonamide **3** (1081 mg, 3.28 mmol, 1.05 equiv),

Pd(PPh₃)₂Cl₂ (218 mg, 0.31 mmol, 10 mol%), CuI (119 mg, 0.62 mmol, 20 mol%), dry DMF (4 mL), piperidine (928 μL, 9.40 mmol, 3 equiv); stirred at 40 °C for 22 h; purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 50:50 to 40:60). Yield: 86% (472 mg). M.pt 105.9 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.63 (d, *J* = 8.1 Hz, 2H; Ar-H), 7.31–7.26 (m, 5H; Ar-H), 7.16–7.11 (m, 4H; Ar-H), 6.76 (d, *J* = 8.4 Hz, 2H; Ar-H), 5.29 (d, *J* = 6.6 Hz, 1H; NH), 4.50 (q, *J* = 12.6 Hz, *J* = 6.0 Hz, 1H; benzyl), 3.76 (s, 3H; OMe), 2.81 (d, *J* = 6.3 Hz, 2H; CH₂), 2.35 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.3, 143.3, 137.4, 131.8, 131.7, 129.5, 128.3, 128.2, 127.8, 127.2, 122.9, 113.8, 84.7 (C), 84.0 (C), 55.7 (CH), 55.2 (OCH₃), 28.3 (CH₂), 21.3 (CH₃) ppm. HRMS (ESI-): calc'd for C₂₄H₂₃NO₃S [M+H]⁻: *m/z* 405.1404; found *m/z* 405.1350.

Methyl 6-(4-(4-methoxyphenyl)-4-(tosylamine)but-1-ynyl)pyridine-2-carboxylate 4e. Synthesis according to general method 1: methyl 6-bromopyridine-2-carboxylate (300 mg, 3.13 mmol, 1 equiv), sulfonamide **3** (1081 mg, 3.28 mmol, 1.05 equiv), Pd(PPh₃)₂Cl₂ (218 mg, 0.31 mmol, 10 mol%), CuI (119 mg, 0.62 mmol, 20 mol%), dry DMF (4 mL), piperidine (928 μ L, 9.40 mmol, 3 equiv); stirred at 40 °C for 22 h; purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 50:50 to 40:60). Yield: 77% (987 mg). M.pt. 136.2 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.03 (d, *J* = 8.1 Hz, 1H; pyr), 7.75 (t, *J* = 7.8 Hz, 1H; pyr), 7.65 (d, *J* = 8.1 Hz, 2H; Ar-H), 7.42 (d, *J* = 7.8 Hz, 1H; pyr), 7.16 (d, *J* = 8.1 Hz, 2H; Ar-H), 7.12 (d, *J* = 8.4 Hz, 2H; Ar-H), 6.75 (d, *J* = 8.7 Hz, 2H; Ar-H), 5.37 (d, *J* = 4.5 Hz, 1H; NH), 4.55 (q, *J* = 12.9 Hz, *J* = 6.3 Hz, 1H; benzyl), 3.99 (s, 3H; COOMe), 3.76 (s, 3H; OMe), 2.88 (d, *J* = 6.0 Hz, 2H; CH₂), 2.35 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 165.3, 159.4, 148.2, 143.3, 137.4, 137.2, 131.5, 130.2, 129.5, 127.8, 127.2, 124.0, 113.9, 86.9 (C), 82.7 (C), 55.4 (CH), 55.2 (OCH₃), 52.9 (CH₃), 28.2 (CH₂), 21.3 (CH₃) ppm. HRMS (ESI+): calc'd for C₂₅H₂₄N₂O₅S [M+H]⁺: *m/z* 465.1479; found *m/z* 465.1413.

2-(4-Methoxyphenyl)-5-(1,3-bis(trifluoromethyl)phenyl)-1*H*-pyrrole **5a.** General method **2:** A flamedried flask was charged with **4a** (200 mg, 0.37 mmol, 1 equiv), TBAF.3H₂O (582 mg, 1.84 mmol, 5 equiv) and dry DMF (2 mL). The mixture was stirred at 80 °C for 48 h under a nitrogen atmosphere. Saturated NH₄Cl solution was added and the mixture was extracted with EtOAc (3×). The combined organic fractions were washed with water (2×), dried over Na₂SO₄ and solvents removed under reduced pressure. The residue was purified by column chromatography (silica, eluent MPLC: hexane–ethyl acetate, gradient 95:5 to 90:10) to obtain compound **5a** as a yellow solid (106 mg, 74%). M.pt 124.5 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.53 (s, 1H; NH), 7.86 (s, 2H; Ar-H), 7.65 (s, 1H; Ar-H), 7.50 (d, *J* = 8.7 Hz, 2H; Ar-H), 6.97 (d, *J* = 9.0 Hz, 2H; Ar-H), 6.71 (t, *J* = 3.0 Hz, 1H; pyrrole), 6.50 (s, *J* = 2.7 Hz, 1H; pyrrole), 3.85 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.2, 135.5, 134.5, 132.4 (q, *J* = 65.6 Hz, *J* = 32.8 Hz, C; CF₃), 129.4, 125.7, 125.2, 124.8, 123.0, 121.6, 119.1–118.9 (m, C-CF₃), 114.6, 110.5, 107.7, 55.3 (OCH₃) ppm. HRMS (ESI-): calc'd for C₁₉H₁₄NOF₆ [M+H]⁻: *m/z* 385.0861; found *m/z* 385.0749.

2-(4-Methoxyphenyl)-5-(4-trifluoromethylphenyl)-1*H*-pyrrole **5b.** Synthesis according to general method 2: **4b** (200 mg, 0.42 mmol, 1 equiv), TBAF.3H₂O (665 mg, 2.11 mmol, 5 equiv), dry DMF (2 mL); purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 85:15 to 80:20) to obtain compound **5b** as a yellow solid (92 mg, 68%). M.pt 197.9 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.51 (s, 1H; NH), 7.64–7.56 (m, 4H; Ar-H), 7.47 (d, *J* = 8.7 Hz, 2H; Ar-H), 6.98–6.93 (m, 2H; Ar-H), 6.66 (s_{br}, 1H; pyrrole), 6.49 (s_{br}, 1H; pyrrole), 3.84 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 158.9, 135.8, 134.6, 130.9, 127.9, 127.5, 126.2–125.9 (m, C; CF₃), 125.5, 125.1, 123.3, 122.5,

114.5, 109.6, 107.4, 55.3 (OCH₃) ppm. HRMS (ESI+): calc'd for $C_{18}H_{15}NOF_3 [M+H]^+$: *m/z* 318.1100; found *m/z* 318.2368.

2-[5-(4-Methoxyphenyl)-1*H***-pyrrol-2-yl]-pyridine 5c.** A flame-dried flask was charged with **4c** (200 mg, 0.49 mmol, 1 equiv), Pd(PPh₃)₂Cl₂ (34 mg, 0.05 mmol, 10 mol%), K₂CO₃ (340 mg, 2.46 mmol, 5 equiv) and dry DMF (2 mL). The mixture was stirred at 80 °C during 24 h under a nitrogen atmosphere. Subsequently, NaOH (393 mg, 9.84 mmol, 20 equiv) and 2 drops of water were added and the reaction mixture was stirred for another 3 h at 80 °C under a nitrogen atmosphere. Saturated NH₄Cl solution was added and the mixture was extracted with EtOAc (3×). The combined organic fractions were washed with water (2×), dried over Na₂SO₄ and the solvents were removed under reduced pressure. The residue was purified by column chromatography (silica, eluent MPLC: hexane–ethyl acetate, gradient 80:20 to 65:35) to obtain compound **5c** as a yellow solid (59 mg, 48%). M.pt. 122.5 °C. ¹H NMR (300 MHz, THF-*d*₈): $\delta = 10.62$ (s, 1H; NH), 8.44 (d, J = 6.3 Hz, 1H; pyr), 7.64–7.61 (m, 4H; Ar-H, pyr), 7.01–6.95 (m, 1H; pyr), 6.91 (d, J = 8.7 Hz, 2H; Ar-H), 6.74 (t, J = 2.1 Hz, 1H; pyrrole), 6.43 (t, J = 2.3 Hz, 1H; pyrrole), 3.78 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, THF-*d*₈): $\delta = 159.9$, 152.3, 149.8, 137.0, 135.7, 133.3, 126.8, 126.6, 120.8, 118.7, 114.9, 110.1, 107.7, 55.5 (OCH₃) ppm. HRMS (ESI+): calc'd for C₁₆H₁₄N₂O [M+H]⁺: *m/z* 250.1179; found *m/z* 250.1154.

2-(4-Methoxyphenyl)-5-(phenyl)-1H-pyrrole 5d. A flask was charged with compound **7d** (100 mg, 0.24 mmol, 1 equiv), NaOH (394 mg, 9.86 mmol, 40 equiv), DMF (2 mL) and 2 drops of water. The mixture was stirred at 80 °C during 72 h under a nitrogen atmosphere. Saturated NH₄Cl solution was added and the mixture was extracted with EtOAc (3×). The combined organic fases were washed with water (2×), dried over Na₂SO₄ and solvents were removed under reduced pressure. The residue was purified by column chromatography (silica, eluent MPLC: hexane–ethyl acetate, gradient 95:5 to 90:10) to obtain compound **5d** as a yellow solid (11 mg, 18%). M.pt. 158.4 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.46 (s, 1H; NH), 7.52–7.20 (m, 7H; Ar-H), 6.93 (d, *J* = 6.6 Hz, 2H; Ar-H), 6.55 (s_{br}, 1H; pyrrole), 6.45 (s_{br}, 1H; pyrrole), 3.82 (s, 3H; Me) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 158.6, 133.3, 132.7, 132.6, 129.0, 126.2, 125.7, 125.3, 123.7, 114.5, 107.8, 106.9, 55.3 (OCH₃). HRMS (ESI+): calc'd for C₁₇H₁₅NO [M+H]⁺: *m/z* 249.1148; found *m/z* 249.1125.

2,3-Dihydro-2-(4-methoxyphenyl)-*N*-tosylbut-3-yn-1-amine **6.** Synthesis according to general method 2: *N*-tosylimine **3** (100 mg, 0.30 mmol, 1.0 equiv), TBAF.3H₂O (478 mg, 1.51 mmol, 5 equiv), dry DMF (1 mL); purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 90:10 to 80:20) to obtain compound **6** as a yellow solid (69 mg, 69%). M.pt. 122.3 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d, *J* = 8.4, 2H; Ar-H), 7.28 (d, *J* = 8.7, 2H; Ar-H), 7.24 (d, *J* = 9.0, 2H; Ar-H), 6.51 (d, *J* = 9.0, 2H; Ar-H), 6.53–6.50 (m, 1H; Ar-H), 5.13–5.09 (m, 1H; CH), 4.68 (dd, *J* = Hz, *J* = Hz, 1H; benzyl), 3.79 (s, 3H; OCH₃), 2.94–2.84 (m, 1H), 2.51–2.47 (m, 1H), 2.42 (s, 3H; CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.1, 143.6, 134.9, 134.3, 130.8, 129.5, 128.0, 127.6, 127.3, 113.9, 113.7, 109.9, 62.6 (CH), 55.2 (OCH₃), 40.5 (CH₂), 21.4 (CH₃) ppm. HRMS (ESI+): calc'd for C₁₈H₁₉NO₃S [M+H]⁺: *m/z* 330.1158; found *m/z* 330.1198;

5-(4-(Trifluoromethyl)phenyl)-2,3-dihydro-2-(4-methoxyphenyl)-1-tosyl-1*H*-pyrrole 7b. General method 3: A flame-dried flask was charged with 4b (120 mg, 0.25 mmol, 1 equiv), $Pd(PPh_3)_2Cl_2$ (18 mg, 0.02 mmol, 10 mol%), K_2CO_3 (175 mg, 1.26 mmol, 5 equiv) and dry DMF (2 mL). The mixture was stirred at 80 °C during 24 h. Saturated NH₄Cl solution was added and the mixture was extracted with

EtOAc (3×). The combined organic fractions were washed with water (2×), dried over Na₂SO₄ and solvents were removed under reduced pressure. The residue was purified by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 85:15 to 75:25) to obtain compound **7b** as a yellowish solid (33 mg, 27%). M.pt. 137.4 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.70 (d, *J* = 8.1 Hz, 2H; Ar-H), 7.63–7.58 (m, 4H; Ar-H), 7.35 (dt, *J* = 8.7 Hz, *J* = 2.7 Hz, 2H; Ar-H), 7.30 (d, *J* = 8.1 Hz, 2H; Ar-H), 6.89 (dt, *J* = 8.7 Hz, *J* = 3.0 Hz, 2H; Ar-H), 5.56 (dd, *J* = 3.9 Hz, *J* = 2.4 Hz, 1H; CH), 4.53 (dd, *J* = 9.0 Hz, *J* = 2.4 Hz, 1H; benzyl), 3.80 (s, 3H; O CH₃), 2.45 (s, 3H; CH₃), 2.45–2.30 (m, 2H; CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.3 (C), 144.1 (C), 143.4 (C), 136.8 (C), 134.7 (C), 134.3 (C), 130.7, 130.3, 129.6 (CH; Ar-CH), 127.9 (CH; ; Ar-CH), 127.7 (CH; Ar-CH), 127.0 (CH; Ar-CH), 125.9, 125.1 (q, *J* = 7.4 Hz, *J* = 3.6 Hz; CF₃), 122.3, 118.5 (CH), 114.2 (CH; Ar-CH), 64.9 (CH), 55.2 (OCH₃), 36.7 (CH₂), 21.5 (CH₃) ppm. HRMS (ESI+): calc'd for C₂₅H₂₂NO₃SF₃ [M+H]⁺: *m/z* 474.1345; found *m/z* 474.1285;

2-(4,5-Dihydro-5-(4-methoxyphenyl)-1-tosyl-1*H***-pyrrol-2-yl)pyridine 7c.** Synthesis according to general method 3: **4c** (159 mg, 0.39 mmol, 1 equiv), Pd(PPh₃)₂Cl₂ (27 mg, 0.04 mmol, 10 mol%), K₂CO₃ (270 mg, 1.95 mmol, 5 equiv), dry DMF (2 mL); purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 85:15 to 75:25) to obtain compound **7c** as a yellowish solid (90 mg, 60%). M.pt. 57.2 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.60–8.57 (m, 1H; Ar-H), 7.80 (d, *J* = 8.1 Hz, 1H; Ar-H), 7.74–7.68 (m, 3H; Ar-H), 7.37–7.30 (m, 4H; Ar-H), 7.25–7.21 (m, 1H; Ar-H), 6.86 (dt, *J* = 8.7 Hz, *J* = 3.0 Hz, 2H; Ar-H), 5.98 (t, *J* = 3.0 Hz, 1H; CH), 5.24 (dd, *J* = 6.6 Hz, *J* = 3.9 Hz, 1H; benzyl), 3.79 (s, 3H; OCH₃), 2.43 (s, 3H; CH₃), 2.44–2.29 (m, 2H; CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.2, 151.8, 149.0, 144.0, 135.9, 134.6, 133.8, 133.3, 133.1, 129.6, 128.8, 128.6, 128.1, 127.1, 125.8, 123.5, 123.1, 120.6, 114.1, 65.2 (CH), 55.2 (OCH₃), 36.5 (CH₂), 21.5 (CH₃) ppm. HRMS (ESI+): calc'd for C₂₃H₂₂N₂O₃S [M+H]⁺: *m/z* 407.1424; found *m/z* 407.1404.

2,3-Dihydro-2-(4-methoxyphenyl)-5-phenyl-1-tosyl-1H-pyrrole 7d. Synthesis according to general method 3: **4d** (100 mg, 0.24 mmol, 1 equiv), Pd(PPh₃)₂Cl₂ (17 mg, 0.02 mmol, 10 mol%), K₂CO₃ (170 mg, 1.23 mmol, 5 equiv), dry DMF (2 mL); stirred at 100 °C for 48 h; purification by column chromatography (silica, MPLC: hexane–ethyl acetate, gradient 90:10 to 70:30) to obtain compound **7d** as a yellowish solid (33 mg, 33%). M.pt. 52.7 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.63–7.58 (m, 4H; Ar-H), 7.413–7.34 (m, 5H; Ar-H), 7.29 (d, *J* = 8.1 Hz, 2H; Ar-H), 6.88 (dt, *J* = 9.0 Hz, *J* = 3.0 Hz, 2H; Ar-H), 5.42 (q, *J* = 3.6 Hz, *J* = 2.1 Hz, 1H; Ar-H), 5.30 (dd, *J* = 8.7 Hz, *J* = 1.8 Hz, 1H; CH), 3.79 (s, 3H; OMe), 2.44 (s, 3H; Me), 2.41–2.26 (m, 2H; CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.1 (C), 144.5 (C), 143.8, 135.2, 134.5, 133.3, 129.7, 129.4, 128.8, 128.7, 128.3, 128.0, 127.9, 127.6, 127.0, 116.1, 114.0, 64.8 (CH), 55.2 (OCH₃), 36.6 (CH₂), 21.5 (CH₃) ppm. HRMS (ESI+): calc'd for C₂₄H₂₃NO₃S [M+H]⁺: *m/z* 406.1471; found *m/z* 406.1438.

3. ¹H and ¹³C NMR spectra of pyrroles 5a–d

4. X-ray crystallographic structure and data for pyrrole 5c

Data collection was performed using MoK α radiation ($\lambda = 0.71073$ Å) on a RIGAKU VariMax Saturn diffractometer equipped with a CCD detector. Prior to the diffraction experiment the crystals were flash-cooled to 100 K in a cold N₂ gas flow. Cell refinement and data reduction were carried out by the program d*trek package in CrystalClear software suite.² The structures were solved by direct methods (SIR-92)³ and refined by full-matrix least squares on F^2 using the SHELXL-97⁴ in WinGX program package.⁵ Nonhydrogen atoms were anisotropically refined and the hydrogen atoms were placed on calculated positions with temperature factors fixed at 1.2 times Ueq of the parent atoms and 1.5 times Ueq for methyl groups. The fundamental crystal data and experimental parameters for the structure determinations are summarized below. Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 962821. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK:<u>http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi</u>, e-mail: <u>data_request@ccdc.cam.ac.uk</u>, or fax: +44 1223 336033.

formula	$C_{16}H_{14}N_2O_1$
M (g mol ⁻¹)	250.29
crystal dimensions (mm ³)	0.12 x 0.24 x 0.07
T(K)	100(2)
crystal system	Monoclinic
space group	$P 2_1$
<i>a</i> (Å)	5.6181(4)
<i>b</i> (Å)	21.2320(19)
<i>c</i> (Å)	10.8628(9)
β (deg)	98.103(2)
$V(Å^3)$	1282.82(18)
Ζ	2
$\rho_{\rm calc} ({\rm g \ cm}^{-3})$	1.413
μ (mm ⁻¹)	0.082
F(000)	524
$\lambda(\dot{A})$	0.71073 (Mo Kα)
$\theta_{\rm max}$ (deg)	31.070
measured reflections	6030
unique reflections	3938
observed reflections (Io > 2σ (Io))	3256
parameters refined	354
\hat{R}_1	0.0414
wR_2^{a}	0.1013
R_1 (all data)	0.0579
wR_2 (all data)	0.1152
GOOF	1.031

² CrystalClear, Rigaku Corporation, Tokyo, Japan (2005).

³ A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi J. Appl. Cryst. 1993, 26, 343.

⁴ G. M. Sheldrick, Acta Cryst. 2008, A64, 112.

⁵ L. J. Farrugia, J. Appl. Cryst. 1999, **32**, 837.

Figure S1. Unit cell for pyrrole **5c**.