Supporting Information

Novel Synthesis of Thiazolo/thienoazepine-5,8-diones from Dihalo

Cyclic 1,3-Diketones and Mercaptonitrile Salts

Laichun Luo, Lanlan Meng, Qi Sun,* Zemei Ge, Runtao Li*

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

Content

1.	General information	S2
2.	Synthesis of dihalo cyclic 1,3-diketones 9a-f	S2
3.	Preparation and characterisation data of multifunctionalized thiazoles and	thiophenes
	10a-l	
4.	Preparation and characterisation data of thiazolo/thienoazepine-5,8-diones 11a-f	S7
5.	Synthesis of 2-(methylthio)-6,11-dihydro-thiazolo-[4',5':2,3]- azepino-[4,5-b]indol	-5(4H)-one
	13	S9
6.	Crystal information of compounds 11c	S10
7.	¹ H NMR and ¹³ C NMR spectra	S14

1. General information

¹H NMR and ¹³C NMR spectra were recorded with a Bruker AVIII-400 spectrometer at ambient temperature with CDCl₃ or DMSO- d_6 as the solvent. High-resolution mass spectra were recorded by Bruker Apex IV Fourier Transform Ion Cyclotron Resonance Mass Spectrometer spectrometer. All melting points were measured on a melting point apparatus with uncorrected thermometers. X-Ray crystallographic analysis was performed with a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at 180.00(10) K during data collection. Using Olex2, the structure was solved with the Superflip structure solution program using Charge Flipping and refined with the XL refinement package using Least Squares minimization. Flash column chromatography was performed with 200-300 mesh silica gel.

2. Synthesis of dihalo cyclic 1,3-diketones 9a-f

To the solution of 1,3-diketones A (5 mmol) in EtOH (10 mL) was added NBS or NCS (10 mmol). The mixture was stirred at room temperature for 10 min, then diluted with water (30.0 mL), and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄. The solvent was removed and the residue was recrystallized from EtOAc/petroleum ether.

2,2-Dibromoindane-1,3-dione (9a)¹: Obtained in 95% yield, yellow solid; m.p. 180-181 °C (Lit.¹ 177-178 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.10 (m, 2H), 8.06-8.01 (m, 2H).

2,2-Dichloroindane-1,3-dione (9a')²: Obtained in 92% yield, yellow solid; m.p. 122-124 °C (Lit.² 125-126 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.13 (m, 2H), 8.07-8.04 (m, 2H).

¹ R. Horcajada, B. Batanero, F. Barba and A. Martín, *Tetrahedron Lett.* 2007, 48, 6437-6441.

² J.-J. Kim, D.-H. Kweon, S.-D. Cho, H.-K. Kim, S.-G. Lee and Y.-J. Yoon, *Synlett.* 2006, 194-200.

5,5-Dibromo-4H-cyclopenta[b]thiophene-4,6(5H)-dione (9b): Obtained in 87% yield from 4H-cyclopenta[b]thiophene-4,6(5H)-dione³, yellow solid; m.p. 180-181 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 4.9 Hz, 1H), 7.53 (d, *J* = 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 180.5, 179.1, 149.8, 148.6, 144.9, 122.6, 55.4; IR (cm⁻¹):1754, 1712, 1376, 1269, 717, 664, 593; HRMS (ESI): *m/z* calcd for C₇H₃Br₂O₂S [M+H]⁺: 308.8215, found: 308.8217.

2,2-Dibromo-5,5-dimethylcyclohexane-1,3-dione (9e)⁴⁻⁶: Prepared from 5,5-dimethylcyclohexane-1,3-dione according to the literature procedure.⁴ Obtained in 85% yield, white solid; m.p. 140-141 °C (Lit.⁵ 140 °C); ¹H NMR (400 MHz, CDCl₃) δ 3.02 (s, 4H), 1.02 (s, 6H).⁶

9c-d and **9f** were prepared according to the literature procedure⁷. To the solution of 1,3-diketones **A** (10 mmol) in CHCl₃ (20 mL) was added sulfuryl chloride (4.0 g, 30 mmol). The mixture was stirred at room temperature for 5 hours. The solvent was removed and the residue was recrystallized from EtOAc/petroleum ether.

2,2-Dichlorocyclopentane-1,3-dione (9c)⁷: Obtained in 66% yield, yellow solid; m.p. 80-81 °C (Lit.^{7a} 83.5 °C); ¹H NMR (400 MHz, CDCl₃) δ 3.09 (s, 4H).

2,2-Dichlorocyclohexane-1,3-dione (9d)⁸: Obtained in 71% yield, yellow solid; m.p. 66-67 °C (Lit.⁸ 68 °C); ¹H NMR (400 MHz, CDCl₃) δ 3.05 (t, *J* = 6.8 Hz, 4H), 2.00 (quintet, *J* = 6.8 Hz, 2H).

³ G. Sartori, F. Bigi, R. Maggi, D. Baraldi and G. Casnati, J. Chem. Soc., Perkin Trans. 1 1992, 2985-2988.

⁴ P. Goswami, A. Baruah and B. Das, *Adv. Synth. Catal.* 2009, **351**, 1483-1487.

⁵ V. V. Dabholkar and S. K. J. Mishra, *Heterocycl. Commun.* 2006, **12**, 241-246.

⁶ K.-M. Kim and I.-H. Park, *Synthesis* 2004, 2641-2644.

⁷ (a) J. R. Beckwith and L. P. Hager, *J. Org. Chem.* 1961, **26**, 5206-5208; (b) M. Vandewalle, N. Schamp and H. De Wilde, *Bulletin des Sociétés Chimiques Belges* 1966, **75**, 648-654.

⁸ N. Schamp and M. Verzele, Bulletin des Sociétés Chimiques Belges 1964, 73, 38-43.

2,2-Dichloro-5-phenylcyclohexane-1,3-dione (9f)⁹: Obtained in 63% yield, yellow solid; m.p. 68-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.21 (m, 5H), 3.51-3.44 (m, 2H), 3.26-3.18 (m, 1H), 3.14-3.10 (m, 2H).

3. Preparation and characterisation data of multifunctionalized thiazoles and thiophenes 10a-l.

To the solution of dihalo cyclic 1,3-diketones **9** (0.5 mmol) in EtOH (2.0 mL) was added mercaptonitrile salt **5** (1 mmol) and Et₃N (0.5 mmol). The mixture was stirred at room temperature for 2 h, then diluted with water (20.0 mL), and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄. The solvent was removed and the residue was purified by a short silica gel column (EtOAc/petroleum ether, 1:5) to afford the desired product **10**.

Ethyl 2-(4-amino-2-(methylthio)thiazole-5-carbonyl)benzoate (10a): Obtained in 75% yield, yellow solid; m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 7.7, 1.0 Hz, 1H), 7.58 (td, J = 7.5, 1.3 Hz, 1H), 7.51 (td, J = 7.6, 1.4 Hz, 1H), 7.42 (dd, J = 7.5, 1.0 Hz, 1H), 6.70 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 2.58 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.8, 175.9, 166.1, 163.0, 142.9, 132.3, 130.5, 129.5, 128.3, 127.0, 104.1, 61.5, 16.0, 13.8; IR (cm⁻¹): 3412, 3262, 3158, 1719, 1609, 1483, 1379, 1268, 1078, 745; HRMS (ESI): *m/z* calcd for C₁₄H₁₅N₂O₃S₂ [M+H]⁺: 323.0519, found: 323.0524.

Ethyl 2-(4-amino-2-(methylthio)thiazole-5-carbonyl)thiophene-3-carboxylate (10b): Obtained in 34% yield, yellow solid; m.p. 114-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 5.1 Hz, 1H), 7.34 (d, J = 5.1 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 176.9, 163.4, 162.2, 147.3, 131.4, 128.7, 125.9, 105.3, 61.2, 16.0, 13.8; IR (cm⁻¹): 3422, 3317, 1713, 1600, 1474, 1377, 1262; HRMS (ESI): *m/z* calcd for C₁₂H₁₃N₂O₃S₃ [M+H]⁺: 329.0083, found: 329.0089. The ¹H NMR spectrum of **10b** has shown

⁹ E. Gudriniece, G. Vanags, A. Kurzemnieks and Z. Grants, *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.* 1960, **3**, 119-121.

distinctive signals corresponding to 2-substituted alkyl 3-thiophenecarboxylates.¹⁰

Ethyl 3-(4-amino-2-(methylthio)thiazole-5-carbonyl)thiophene-2-carboxylate (10b'): Obtained in 36% yield, yellow solid; m.p. 141-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 5.0 Hz, 1H), 7.13 (d, J = 5.0 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.60 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.4, 176.4, 163.0, 161.1, 147.1, 131.6, 130.7, 127.7, 104.9, 61.6, 16.0, 13.9; IR (cm⁻¹): 3435, 3327, 1717, 1607, 1475, 1383, 1285, 1077; HRMS (ESI): m/z calcd for C₁₂H₁₃N₂O₃S₃ [M+H]⁺: 329.0083, found: 329.0089. The ¹H NMR spectrum of **10b'** has shown distinctive signals corresponding to 3-substituted alkyl 2-thiophenecarboxylates.¹¹

Ethyl 4-(4-amino-2-(methylthio)thiazol-5-yl)-4-oxobutanoate (10c): Obtained in 65% yield, yellow solid; m.p. 119-121 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.57 (s, 2H), 4.15 (q, J = 7.0 Hz, 2H), 2.86 (t, J = 6.6 Hz, 2H), 2.69 (t, J = 6.7 Hz, 2H), 2.66 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.8, 173.6, 172.8, 162.7, 102.7, 60.7, 36.2, 28.6, 16.0, 14.2; IR (cm⁻¹): 3400, 3258, 3165, 1733, 1620, 1483, 1376, 1232; HRMS (ESI): m/z calcd for C₁₀H₁₅N₂O₃S₂ [M+H]⁺: 275.0519, found: 275.0520.

Ethyl 5-(4-amino-2-(methylthio)thiazol-5-yl)-5-oxopentanoate (10d): Obtained in 68% yield, pale yellow solid; m.p. 66-67 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.67 (s, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.63 (s, 3H), 2.57 (t, *J* = 7.2 Hz, 2H), 2.37 (t, *J* = 7.2 Hz, 2H), 2.11-1.93 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.2, 173.3, 173.1, 162.8, 102.9, 60.3, 40.8, 33.4, 20.0, 15.9, 14.2; IR (cm⁻¹): 3416, 3278, 2982, 1727, 1625, 1493, 1384, 1292, 968. HRMS (ESI): *m/z* calcd for C₁₁H₁₇N₂O₃S₂ [M+H]⁺: 289.0675, found: 289.0676.

Ethyl 5-(4-amino-2-(methylthio)thiazol-5-yl)-3,3-dimethyl-5-oxopentanoate (10e): Obtained in 59% yield, pale yellow solid; m.p. 74-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.68 (s, 2H), 4.12 (q, J = 7.1 Hz, 2H), 2.65 (s, 3H), 2.63 (s, 2H), 2.47 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H), 1.20-1.08 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 190.4, 173.2, 172.1, 162.7, 104.6, 60.0, 52.0, 45.6, 33.8, 28.1, 16.0, 14.3; IR (cm⁻¹): 3405, 3296, 2973, 2956, 1736, 1610, 1482, 1385, 1164; HRMS (ESI): m/z calcd for C₁₃H₂₁N₂O₃S₂ [M+H]⁺: 317.0988, found: 317.0995.

¹⁰ H. Satonaka, Bull. Chem. Soc. Jpn. 1983, 56, 3337-3342.

¹¹ H. Satonaka, Bull. Chem. Soc. Jpn. 1983, 56, 2463-2468.

Ethyl 5-(4-amino-2-(methylthio)thiazol-5-yl)-5-oxo-3-phenylpentanoate (10f): Obtained in 52% yield, yellow solid; m.p. 61-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.16 (m, 5H), 6.54 (s, 2H), 4.06-3.97 (m, 2H), 3.85-3.76 (m, 1H), 2.94-2.61 (m, 7H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.6, 173.6, 171.7, 163.0, 143.1, 128.5, 127.3, 126.8, 103.1, 60.3, 48.1, 40.7, 38.2, 15.9, 14.1; IR (cm⁻¹): 3431, 3319, 2980, 2928, 1731, 1613, 1483, 1390, 701; HRMS (ESI): *m/z* calcd for C₁₇H₂₁N₂O₃S₂ [M+H]⁺: 365.0988, found: 365.0992.

Ethyl 2-(4-amino-2-(phenylamino)thiazole-5-carbonyl)benzoate (10g): Obtained in 43% yield, yellow solid; m.p. 189-190 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.54 (td, J = 7.5, 1.1 Hz, 1H), 7.48-7.40 (m, 2H), 7.36-7.31 (m, 2H), 7.30-7.24 (m, 2H), 7.14 (t, J = 7.3 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.8, 169.5, 166.4, 162.8, 143.2, 138.4, 132.2, 130.4, 129.7, 129.2, 128.4, 127.2, 125.1, 120.3, 96.2, 61.4, 13.8; IR (cm⁻¹): 3421, 3304, 1728, 1630, 1603, 1526, 1263, 749; HRMS (ESI): *m/z* calcd for C₁₉H₁₈N₃O₃S [M+H]⁺: 368.1063, found: 368.1069.

Ethyl 2-(3-amino-4-cyano-5-(methylthio)thiophene-2-carbonyl)benzoate (10h): Obtained in 82% yield, yellow solid; m.p. 169-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 7.7, 0.9 Hz, 1H), 7.65-7.52 (m, 2H), 7.41 (dd, J = 7.5, 0.9 Hz, 1H), 6.63 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 2.54 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.6, 165.7, 161.1, 154.4, 141.8, 132.4, 130.6, 129.8, 128.5, 127.2, 112.3, 110.0, 98.6, 61.6, 17.4, 13.8.; IR (cm⁻¹): 3409, 3308, 2216, 1720, 1603, 1504, 1403, 1320, 1290, 1137, 753; HRMS (ESI): *m/z* calcd for C₁₉H₁₉N₂O₃S [M+H]⁺: 355.1111, found: 355.1117.

Ethyl 4-(3-amino-4-cyano-5-(methylthio)thiophen-2-yl)-4-oxobutanoate (10i): Obtained in 64% yield, yellow solid; m.p. 140-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.53 (s, 2H), 4.16 (q, *J* =7.1 Hz, 2H), 2.91 (t, *J* = 6.5 Hz, 2H), 2.81-2.61 (m, 5H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.2, 172.9, 158.9, 154.2, 112.3, 108.6, 98.8, 60.8, 35.0, 28.3, 17.5, 14.2; IR (cm⁻¹): 3422, 3314, 2917, 2218, 1718, 1628, 1605, 1503, 1410, 1237, 1175; HRMS (ESI): *m/z* calcd for C₁₂H₁₅N₂O₃S₂ [M+H]⁺: 299.0519, found: 299.0523.

Ethyl 5-(3-amino-4-cyano-5-(methylthio)thiophen-2-yl)-5-oxopentanoate (10j): Obtained in 71% yield, yellow solid; m.p. 101-102 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.60 (s, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.72-2.44 (m, 5H), 2.40 (t, *J* = 7.2 Hz, 2H), 2.04 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.7, 173.1, 158.9, 154.2, 112.3, 108.8, 98.8, 60.4, 39.7, 33.3, 19.8, 17.6, 14.3; IR (cm⁻¹): 3410, 3301, 2986, 2923, 2215, 1721, 1630, 1602, 1507, 1411, 1182, 1027; HRMS (ESI): *m/z* calcd for C₁₃H₁₇N₂O₃S₂ [M+H]⁺: 313.0675, found: 313.0682.

Ethyl 5-(3-amino-4-cyano-5-(methylthio)thiophen-2-yl)-3,3-dimethyl-5-oxopentanoate (10k): Obtained in 55% yield, yellow solid; m.p. 93-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.60 (s, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.68 (m, 5H), 2.49 (s, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.16 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 172.1, 158.5, 154.2, 112.4, 110.2, 98.9, 60.1, 50.4, 45.4, 33.74, 28.2, 17.5, 14.3; IR (cm⁻¹): 3418, 3312, 2971, 2211, 1701, 1633, 1600, 1506, 1412, 1363, 1301, 1239, 1041, 881; HRMS (ESI): *m*/*z* calcd for C₁₅H₂₁N₂O₃S₂ [M+H]⁺: 341.0988, found: 341.0993.

Ethyl 5-(3-amino-4-cyano-5-(methylthio)thiophen-2-yl)-5-oxo-3-phenylpentanoate (10l): Obtained in 57% yield, yellow solid; m.p. 93-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.18 (m, 5H), 6.50 (s, 2H), 4.06-3.99 (m, 2H), 3.86-3.77 (m, 1H), 3.00-2.89 (m, 2H), 2.80-2.63 (m, 5H), 1.13 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.4, 171.8, 159.1, 154.4, 143.0, 128.7, 127.4, 127.0, 112.4, 109.2, 98.9, 50.6, 46.9, 30.7, 38.1, 17.6, 14.2; IR (cm⁻¹): 3418, 3307, 2920, 2210, 1732, 1716, 1604, 1504, 1408; HRMS (ESI): *m/z* calcd for C₁₉H₂₁N₂O₃S₂ [M+H]⁺: 389.0988, found: 389.0995.

4. Preparation and characterisation data of thiazolo/thienoazepine-5,8-diones 11a-f

To the solution of **10** (0.2 mmol) in EtOH (2.0 mL) was added NaOEt (27 mg, 0.4 mmol). The mixture was stirred at room temperature for 0.5 h, then diluted with water and extracted with CH_2Cl_2 (3 × 8 mL). The combined organic layers were washed with brine, dried with anhydrous Na_2SO_4 . Then the solvent was removed and crystallized from ethanol to afford the desired product **11**.

2-(Methylthio)-4H-benzo[e]thiazolo[4,5-b]azepine-5,10-dione (11a): Obtained in 93% yield, yellow solid; m.p. 224-225 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.32 (s, 1H), 8.60-8.51 (m, 1H), 8.40-8.32 (m, 1H), 8.96-7.86 (m, 2H), 2.80 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 177.4, 176.4, 163.9, 149.2, 133.5, 133.4, 133.3, 133.2, 130.9, 129.6, 118.5, 16.2; IR (cm⁻¹): 3424, 2921, 2852, 1649, 1566, 1377, 1261, 802; HRMS (ESI): *m/z* calcd for C₁₂H₉N₂O₂S₂ [M+H]⁺: 277.0100, found: 277.0093.

2-(Methylthio)-4H-thiazolo[4,5-b]thieno[2,3-e]azepine-5,9-dione (11b): Obtained in 95% yield, yellow solid; m.p. 185-187 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.48 (s, 1H), 8.12 (d, *J* = 5.2 Hz, 1H), 7.86 (d, *J* = 5.2 Hz, 1H), 2.78 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.6, 170.9, 159.6, 150.4, 146.2, 135.8, 134.2, 133.2, 117.3, 16.8; IR (cm⁻¹): 3425, 2921, 1714, 1605, 1374, 1262; HRMS (ESI): *m/z* calcd for C₁₀H₇N₂O₂S₃ [M+H]⁺: 282.9664, found: 282.9668.

2-(Methylthio)-4H-thiazolo[4,5-b]thieno[3,2-e]azepine-5,9-dione (11b'): Obtained in 93% yield, pale yellow solid; m.p. 254-256 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.66 (s, 1H), 8.15 (d, *J* = 5.3 Hz, 1H), 7.76 (d, *J* = 5.3 Hz, 1H), 2.79 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.3, 172.0, 159.4, 149.3, 143.2, 139.2, 135.6, 130.1, 120.0, 16.7; IR (cm⁻¹): 3447, 2925, 1650, 1596, 1460, 1431, 1407; HRMS (ESI): *m/z* calcd for C₁₀H₇N₂O₂S₃ [M+H]⁺: 282.9664, found: 282.9667.

2-(Methylthio)-6,7-dihydro-4H-thiazolo[4,5-b]azepine-5,8-dione (11c): Obtained in 94% yield, white solid; m.p. 218-219 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.22 (s, 1H), 2.78 (m, 4H), 2.71 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 189.7, 175.4, 172.3, 151.3, 116.9, 34.5, 30.4, 16.2; IR (cm⁻¹): 3442, 3202, 3127, 2983, 2910, 1673, 1638, 1539, 1377, 1249; HRMS (ESI): *m/z* calcd for C₈H₉N₂O₂S₂ [M+H]⁺: 229.0100, found: 229.0101.

2-(Phenylamino)-4H-benzo[e]thiazolo[4,5-b]azepine-5,10-dione (11d): Obtained in 90% yield, yellow solid; m.p. > 300 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.12 (s, 1H), 11.45 (s, 1H), 8.55 (d, J = 7.6 Hz, 1H), 8.41 (d, J = 7.8 Hz, 1H), 7.94-7.82 (m, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.39 (t, J = 7.9 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H); ¹³C NMR (151 MHz, DMSO- d_6) δ 175.2, 166.9, 164.3, 149.4, 139.5, 134.1, 133.6, 133.2, 132.8, 130.4, 129.5, 129.2, 123.6, 119.0, 109.8; IR (cm⁻¹): 3450, 2965, 1652, 1620, 1573, 1454, 1395; HRMS (ESI): m/z calcd for C₁₇H₁₁N₃NaO₂S [M+Na]⁺:

344.0464, found: 344.0465.

2-(Methylthio)-5,10-dioxo-5,10-dihydro-4H-benzo[e]thieno[3,2-b]azepine-3-carbonitrile

(11e): Obtained in 96% yield, yellow solid; m.p. 240-242 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.56 (s, 1H), 8.46-8.39 (m, 1H), 8.32-8.26 (m, 1H), 7.96-7.87 (m, 2H), 2.83 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ 177.9, 165.3, 165.1, 139.1, 133.8, 133.7, 133.5, 133.2, 131.0, 129.5, 123.7, 111.8, 98.9, 16.9; IR (cm⁻¹): 3433, 3212, 3128, 2220, 1661, 1583, 1561, 1526, 1393; HRMS (ESI): m/z calcd for C₁₄H₉N₂O₂S₂ [M+H]⁺: 301.0100, found: 301.0104.

2-(Methylthio)-5,8-dioxo-5,6,7,8-tetrahydro-4H-thieno[3,2-b]azepine-3-carbonitrile (11f): Obtained in 96% yield, yellow solid; m.p. 203-204 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 2.98-2.88 (m, 4H), 2.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188. 7, 172.0, 163. 8, 140.3, 122.7, 111.3, 100.2, 34.9, 30.2, 17.6; IR (cm⁻¹): 3270, 2923, 2213, 1718, 1639, 1537, 1505, 1367, 1201, 749; HRMS (ESI): *m/z* calcd for C₁₄H₉N₂O₂S₂ [M+H]⁺: 301.0100, found: 301.0104.

5. Synthesis of 2-(methylthio)-6,11-dihydro-thiazolo[4',5':2,3]azepino[4,5-b]indol- 5(4H)-one (13)

To the solution of **11c** (114 mg, 0.5 mmol) in glacial acetic acid (4 mL) was added phenylhydrazine hydrochloride (108 mg, 0.75 mmol) and sodium acetate (62 mg, 0.75 mmol). After being stirred at 70 °C for 1 h, the mixture was cooled to room temperature. Then 2 drops of concentrated sulfuric acid were added and the reaction mixture was stirred at 70 °C for another 1 h. After cooling to room temperature, the mixture was poured into a 5% aqueous sodium acetate solution (10 mL). A precipitate was formed, which was filtered off with suction and crystallized from ethanol to yield the desired product.

2-(Methylthio)-6,11-dihydro-thiazolo[4',5':2,3]azepino[4,5-b]indol-5(4H)-one (13): Obtained in 53% yield, yellow solid; m.p. 218-219 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.63 (s, 1H), 10.78 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.11 (m, 2H), 3.56 (s, 2H), 2.75 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.6, 164.3, 145.2, 138.5, 127.2, 126.7, 122.8, 120.0, 118.3, 111.9, 109.6, 106.0, 33.0, 16.5; IR (cm⁻¹): 3442, 3270, 1638, 1030, 742; HRMS (ESI): *m/z* calcd for C₁₄H₁₂N₃OS₂ [M+H]⁺: 302.0416, found: 302.0419.

6. Crystal information of compounds 11c

Table 1 Crystal data and structure refinement for

$C_8H_8N_2O_2S_2$
228.28
100.00(10)
triclinic
P-1
10.3197(9)
10.5653(9)
10.8549(9)
117.738(9)
104.820(7)
102.452(7)
931.99(14)
4
1.627
0.543
472.0
0.3 imes 0.2 imes 0.1
3.16 to 26.02°
$-10 \le h \le 12, -13 \le k \le 12, -11 \le l \le 13$
5748
3640[R(int) = 0.0559]
3640/0/263
1.003
$R_1 = 0.0506, wR_2 = 0.0941$
$R_1 = 0.0785, wR_2 = 0.1109$
0.38/-0.55

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for . U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
C1	9019(3)	9492(3)	2771(4)	17.7(7)
C2	8176(4)	9157(3)	1236(4)	22.5(7)
C3	8757(4)	8453(3)	25(4)	23.1(7)
C4	8264(4)	6722(3)	-776(4)	21.0(7)
C5	8385(3)	6104(3)	173(4)	18.1(7)
C6	8840(3)	6774(3)	1707(4)	17.1(7)
C7	8464(4)	4382(3)	1041(4)	21.3(7)
C8	9362(4)	3752(4)	3170(4)	34.4(9)
C9	5487(3)	5391(3)	2194(4)	18.5(7)
C10	5696(4)	5599(3)	3700(4)	23.8(8)
C11	7177(4)	6747(3)	5005(4)	23.7(8)
C12	7321(4)	8411(3)	5783(4)	20.8(7)
C13	6736(4)	8921(3)	4806(4)	19.9(7)
C14	6067(3)	8200(3)	3262(4)	17.0(7)
C15	6227(4)	10541(3)	3920(4)	21.8(7)
C16	4939(4)	11081(4)	1793(4)	36.8(10)
N1	9278(3)	8316(3)	2870(3)	18.6(6)
N2	8902(3)	5806(2)	2219(3)	19.4(6)
N3	5688(3)	6667(3)	2111(3)	18.2(6)
N4	5774(3)	9117(2)	2743(3)	18.8(6)
01	9452(2)	10776(2)	3954(2)	20.9(5)
O2	7816(3)	5850(2)	-2164(3)	30.5(6)
03	5102(2)	4115(2)	1019(2)	24.2(5)
O4	7905(3)	9313(2)	7169(3)	29.0(6)
S1	7974.6(9)	4126.1(8)	-711.6(9)	24.2(2)
S2	8353.8(11)	2786.5(8)	1168.7(11)	31.8(2)
S3	6995.6(9)	10869.2(8)	5685.3(9)	22.6(2)
S4	6105.5(10)	12092.1(8)	3772.9(10)	28.1(2)

Table 3	Anisotropic Dis	placement 1	Parameters	$(Å^2 \times 10^3)$ for .	The	Anisotropic	displacement
factor e	xponent takes the	e form: $-2\pi^2$	${}^{2}[h^{2}a^{*}{}^{2}U_{11}+$	+2hka×b×U ₁	2]		

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	18.1(19)	20.1(15)	14.4(17)	10.0(14)	7.6(16)	4.1(13)
C2	30(2)	20.1(15)	13.1(17)	9.2(14)	4.1(17)	8.3(14)

22(2)	30.7(16)	13.5(17)	15.0(15)	2.8(16)	4.2(14)
15.8(19)	31.6(16)	13.4(17)	11.8(15)	4.8(16)	8.3(14)
15.4(19)	21.2(15)	13.3(17)	7.4(14)	5.1(16)	5.5(13)
14.6(19)	17.9(14)	12.6(17)	5.6(13)	4.7(15)	3.7(12)
19(2)	21.4(15)	17.6(18)	8.6(14)	6.8(16)	4.8(13)
44(3)	30.0(17)	26(2)	17.5(17)	9(2)	12.5(17)
16.0(19)	20.7(15)	14.2(17)	8.2(14)	3.3(16)	6.5(13)
32(2)	22.8(15)	16.2(18)	12.1(15)	8.3(18)	9.6(15)
30(2)	27.1(16)	16.8(18)	14.9(15)	7.3(18)	12.3(15)
15.8(19)	31.3(16)	10.7(17)	10.7(15)	4.5(16)	4.7(14)
24(2)	19.4(15)	12.4(17)	7.3(14)	5.9(16)	7.6(14)
19.2(19)	19.5(14)	12.8(16)	8.8(13)	7.8(16)	7.4(13)
27(2)	20.2(15)	21.1(19)	11.6(15)	14.4(18)	8.7(14)
57(3)	31.8(18)	20(2)	14.5(17)	10(2)	19.7(19)
27.6(18)	17.4(13)	5.9(14)	5.7(12)	3.2(14)	7.1(11)
20.3(17)	20.0(13)	15.8(15)	10.0(12)	5.2(14)	6.9(11)
25.8(18)	18.4(13)	5.9(14)	5.1(12)	4.7(14)	7.1(11)
23.5(17)	18.8(12)	11.2(14)	7.3(12)	5.5(13)	7.7(11)
27.7(14)	15.6(10)	11.0(12)	4.2(9)	4.1(11)	6.1(9)
35.6(17)	34.2(12)	12.8(13)	9.9(11)	7.5(13)	9.2(11)
32.6(16)	20.5(10)	13.5(12)	6.9(10)	6.1(12)	10.2(10)
30.2(16)	32.5(12)	11.4(13)	9.5(11)	1.9(12)	4.8(11)
28.6(6)	19.6(4)	12.0(4)	2.8(3)	4.1(4)	7.9(4)
41.4(6)	17.6(4)	25.2(5)	9.4(4)	5.4(5)	8.7(4)
28.2(6)	18.6(4)	10.9(4)	3.7(3)	5.5(4)	6.0(3)
38.5(6)	19.8(4)	21.7(5)	10.2(4)	9.4(5)	10.6(4)
	22(2) 15.8(19) 15.4(19) 14.6(19) 19(2) 44(3) 16.0(19) 32(2) 30(2) 15.8(19) 24(2) 19.2(19) 27(2) 57(3) 27.6(18) 20.3(17) 25.8(18) 23.5(17) 27.7(14) 35.6(17) 32.6(16) 30.2(16) 28.6(6) 41.4(6) 28.2(6) 38.5(6)	22(2) $30.7(16)$ $15.8(19)$ $31.6(16)$ $15.4(19)$ $21.2(15)$ $14.6(19)$ $17.9(14)$ $19(2)$ $21.4(15)$ $44(3)$ $30.0(17)$ $16.0(19)$ $20.7(15)$ $32(2)$ $22.8(15)$ $30(2)$ $27.1(16)$ $15.8(19)$ $31.3(16)$ $24(2)$ $19.4(15)$ $19.2(19)$ $19.5(14)$ $27(2)$ $20.2(15)$ $57(3)$ $31.8(18)$ $27.6(18)$ $17.4(13)$ $20.3(17)$ $20.0(13)$ $25.8(18)$ $18.4(13)$ $23.5(17)$ $18.8(12)$ $27.7(14)$ $15.6(10)$ $35.6(17)$ $34.2(12)$ $32.6(16)$ $20.5(10)$ $30.2(16)$ $32.5(12)$ $28.6(6)$ $19.6(4)$ $41.4(6)$ $17.6(4)$ $28.2(6)$ $18.6(4)$ $38.5(6)$ $19.8(4)$	22(2) $30.7(16)$ $13.5(17)$ $15.8(19)$ $31.6(16)$ $13.4(17)$ $15.4(19)$ $21.2(15)$ $13.3(17)$ $14.6(19)$ $17.9(14)$ $12.6(17)$ $19(2)$ $21.4(15)$ $17.6(18)$ $44(3)$ $30.0(17)$ $26(2)$ $16.0(19)$ $20.7(15)$ $14.2(17)$ $32(2)$ $22.8(15)$ $16.2(18)$ $30(2)$ $27.1(16)$ $16.8(18)$ $15.8(19)$ $31.3(16)$ $10.7(17)$ $24(2)$ $19.4(15)$ $12.4(17)$ $19.2(19)$ $19.5(14)$ $12.8(16)$ $27(2)$ $20.2(15)$ $21.1(19)$ $57(3)$ $31.8(18)$ $20(2)$ $27.6(18)$ $17.4(13)$ $5.9(14)$ $20.3(17)$ $20.0(13)$ $15.8(15)$ $25.8(18)$ $18.4(13)$ $5.9(14)$ $23.5(17)$ $18.8(12)$ $11.2(14)$ $27.7(14)$ $15.6(10)$ $11.0(12)$ $35.6(17)$ $34.2(12)$ $12.8(13)$ $32.6(16)$ $20.5(10)$ $13.5(12)$ $30.2(16)$ $32.5(12)$ $11.4(13)$ $28.6(6)$ $19.6(4)$ $12.0(4)$ $41.4(6)$ $17.6(4)$ $25.2(5)$ $28.2(6)$ $18.6(4)$ $10.9(4)$ $38.5(6)$ $19.8(4)$ $21.7(5)$	22(2) $30.7(16)$ $13.5(17)$ $15.0(15)$ $15.8(19)$ $31.6(16)$ $13.4(17)$ $11.8(15)$ $15.4(19)$ $21.2(15)$ $13.3(17)$ $7.4(14)$ $14.6(19)$ $17.9(14)$ $12.6(17)$ $5.6(13)$ $19(2)$ $21.4(15)$ $17.6(18)$ $8.6(14)$ $44(3)$ $30.0(17)$ $26(2)$ $17.5(17)$ $16.0(19)$ $20.7(15)$ $14.2(17)$ $8.2(14)$ $32(2)$ $22.8(15)$ $16.2(18)$ $12.1(15)$ $30(2)$ $27.1(16)$ $16.8(18)$ $14.9(15)$ $15.8(19)$ $31.3(16)$ $10.7(17)$ $10.7(15)$ $24(2)$ $19.4(15)$ $12.4(17)$ $7.3(14)$ $19.2(19)$ $19.5(14)$ $12.8(16)$ $8.8(13)$ $27(2)$ $20.2(15)$ $21.1(19)$ $11.6(15)$ $57(3)$ $31.8(18)$ $20(2)$ $14.5(17)$ $27.6(18)$ $17.4(13)$ $5.9(14)$ $5.7(12)$ $20.3(17)$ $20.0(13)$ $15.8(15)$ $10.0(12)$ $25.8(18)$ $18.4(13)$ $5.9(14)$ $5.1(12)$ $23.5(17)$ $18.8(12)$ $11.2(14)$ $7.3(12)$ $27.7(14)$ $15.6(10)$ $11.0(12)$ $4.2(9)$ $35.6(17)$ $34.2(12)$ $12.8(13)$ $9.9(11)$ $32.6(16)$ $20.5(10)$ $13.5(12)$ $6.9(10)$ $30.2(16)$ $32.5(12)$ $11.4(13)$ $9.5(11)$ $28.6(6)$ $19.6(4)$ $12.0(4)$ $2.8(3)$ $41.4(6)$ $17.6(4)$ $25.2(5)$ $9.4(4)$ $28.2(6)$ $18.6(4)$ $10.9(4)$	22(2) $30.7(16)$ $13.5(17)$ $15.0(15)$ $2.8(16)$ $15.8(19)$ $31.6(16)$ $13.4(17)$ $11.8(15)$ $4.8(16)$ $15.4(19)$ $21.2(15)$ $13.3(17)$ $7.4(14)$ $5.1(16)$ $14.6(19)$ $17.9(14)$ $12.6(17)$ $5.6(13)$ $4.7(15)$ $19(2)$ $21.4(15)$ $17.6(18)$ $8.6(14)$ $6.8(16)$ $44(3)$ $30.0(17)$ $26(2)$ $17.5(17)$ $9(2)$ $16.0(19)$ $20.7(15)$ $14.2(17)$ $8.2(14)$ $3.3(16)$ $32(2)$ $22.8(15)$ $16.2(18)$ $12.1(15)$ $8.3(18)$ $30(2)$ $27.1(16)$ $16.8(18)$ $14.9(15)$ $7.3(18)$ $15.8(19)$ $31.3(16)$ $10.7(17)$ $10.7(15)$ $4.5(16)$ $24(2)$ $19.4(15)$ $12.4(17)$ $7.3(14)$ $5.9(16)$ $19.2(19)$ $19.5(14)$ $12.8(16)$ $8.8(13)$ $7.8(16)$ $27(2)$ $20.2(15)$ $21.1(19)$ $11.6(15)$ $14.4(18)$ $57(3)$ $31.8(18)$ $20(2)$ $14.5(17)$ $10(2)$ $27.6(18)$ $17.4(13)$ $5.9(14)$ $5.7(12)$ $3.2(14)$ $20.3(17)$ $20.0(13)$ $15.8(15)$ $10.0(12)$ $5.2(14)$ $25.8(18)$ $18.4(13)$ $5.9(14)$ $5.1(12)$ $4.7(14)$ $23.5(17)$ $18.8(12)$ $11.2(14)$ $7.3(12)$ $5.5(13)$ $27.7(14)$ $15.6(10)$ $11.0(12)$ $4.2(9)$ $4.1(11)$ $35.6(1)$ $32.5(12)$ $11.4(13)$ $9.9(11)$ $7.5(13)$ $32.6(16)$ <td< td=""></td<>

Table 4 Bond Lengths for .

Ator	Atom Atom Length/Å				Atom Atom Length/Å			
C1	C2	1.495(4)		C9	C10	1.494(4)		
C1	N1	1.371(3)		C9	N3	1.368(3)		
C1	01	1.230(3)		C9	03	1.229(3)		
C2	C3	1.525(4)		C10	C11	1.519(5)		
C3	C4	1.501(4)		C11	C12	1.505(4)		
C4	C5	1.448(4)		C12	C13	1.457(4)		
C4	02	1.225(4)		C12	04	1.220(4)		
C5	C6	1.362(4)		C13	C14	1.363(4)		
C5	S 1	1.735(3)		C13	S3	1.738(2)		
C6	N1	1.388(3)		C14	N3	1.389(3)		
C6	N2	1.379(3)		C14	N4	1.377(3)		

C7	N2	1.312(4)	C15	N4	1.310(4)
C7	S 1	1.708(3)	C15	S3	1.705(3)
C7	S2	1.737(3)	C15	S4	1.746(3)
C8	S2	1.779(4)	C16	S4	1.787(4)

Table 5 Bond Angles for .

Aton	n Aton	n Atom	n Angle/°	Aton	1 Aton	1 Atom	Angle/°
N1	C1	C2	118.9(2)	C12	C11	C10	113.7(3)
01	C1	C2	122.2(2)	C13	C12	C11	117.1(3)
01	C1	N1	118.8(3)	04	C12	C11	122.4(3)
C1	C2	C3	116.2(3)	04	C12	C13	120.5(3)
C4	C3	C2	113.0(2)	C12	C13	S3	117.5(2)
C5	C4	C3	117.0(3)	C14	C13	C12	133.3(2)
02	C4	C3	122.6(3)	C14	C13	S3	109.1(2)
02	C4	C5	120.3(3)	C13	C14	N3	129.2(3)
C4	C5	S 1	117.8(2)	C13	C14	N4	116.5(2)
C6	C5	C4	133.1(3)	N4	C14	N3	114.2(3)
C6	C5	S 1	109.0(2)	N4	C15	S3	117.0(2)
C5	C6	N1	129.8(3)	N4	C15	S4	123.9(3)
C5	C6	N2	116.6(2)	S3	C15	S4	119.16(17)
N2	C6	N1	113.5(3)	C1	N1	C6	128.7(3)
N2	C7	S 1	116.5(2)	C7	N2	C6	108.9(3)
N2	C7	S2	124.2(2)	C9	N3	C14	128.9(3)
S 1	C7	S2	119.31(17)	C15	N4	C14	108.8(3)
N3	C9	C10	118.6(2)	C7	S 1	C5	89.00(13)
03	C9	C10	122.7(2)	C7	S2	C8	99.90(15)
03	C9	N3	118.7(3)	C15	S3	C13	88.70(14)
C9	C10	C11	116.1(2)	C15	S4	C16	100.74(15)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for .

Atom x	у	z	U(eq)
H2A 8139	10139	1368	27
H2B 7164	8438	847	27
H3A 8429	8707	-741	28
H3B 9834	8930	514	28
H8A 10339	4461	3476	52
H8B 9438	2982	3418	52
H8C 8863	4345	3719	52
H10A 5524	4575	3565	29
H10B 4944	5940	4000	29

H11A	7356	6471	5771	28
H11B	7936	6651	4605	28
H16A	.5277	10310	1184	55
H16B	4959	11823	1489	55
H16C	3941	10555	1619	55
H1	9610(30)	8490(30)	3700(40)	7(7)
H3	5570(40)	6530(30)	1310(40)	13(8)

Crystal Data for C₈H₈N₂O₂S₂ (*M*=228.28): triclinic, space group P-1 (no. 2), *a* = 10.3197(9) Å, *b* = 10.5653(9) Å, *c* = 10.8549(9) Å, *a* = 117.738(9)°, *β* = 104.820(7)°, *γ* = 102.452(7)°, *V* = 931.99(14) Å³, *Z* = 4, *T* = 180.00(10) K, μ (Mo K α) = 0.543 mm⁻¹, *Dcalc* = 1.627 g/mm³, 5748 reflections measured (6.32 ≤ 2 Θ ≤ 52.04), 3640 unique (R_{int} = 0.0559) which were used in all calculations. The final R_1 was 0.0506 (>2sigma(I)) and wR_2 was 0.1109 (all data).

This report has been created with Olex2, compiled on Nov 5 2012 18:22:26. Please let us know if there are any errors or if you would like to have additional featrues.

7. ¹H NMR and ¹³C NMR spectra

¹H NMR (400 MHz, CDCl₃) of **9a**

¹H NMR (400 MHz, CDCl₃) of **9b**

¹³C NMR (101 MHz, CDCl₃) of **9b**

¹H NMR (400 MHz, CDCl₃) of **9c**

¹H NMR (400 MHz, CDCl₃) of **9d**

¹H NMR (400 MHz, CDCl₃) of **9e**

$^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of $\mathbf{9f}$

¹H NMR (400 MHz, CDCl₃) of **10a**

¹³C NMR (101 MHz, CDCl₃) of **10a**

1 H NMR (400 MHz, CDCl₃) of **10b**

¹³C NMR (101 MHz, CDCl₃) of **10b**

¹H NMR (400 MHz, CDCl₃) of **10b'**

¹³C NMR (101 MHz, CDCl₃) of **10b**'

¹H NMR (400 MHz, CDCl₃) of **10c**

¹H NMR (400 MHz, CDCl₃) of **10d**

 ^{13}C NMR (101 MHz, CDCl₃) of **10d**

¹H NMR (400 MHz, CDCl₃) of **10e**

¹³C NMR (101 MHz, CDCl₃) of **10e**

¹H NMR (400 MHz, CDCl₃) of **10f**

¹³C NMR (101 MHz, CDCl₃) of **10f**

¹H NMR (400 MHz, CDCl₃) of **10g**

 $^{13}\mathrm{C}$ NMR (101 MHz, CDCl_3) of 10g

¹H NMR (400 MHz, CDCl₃) of **10h**

¹³C NMR (101 MHz, CDCl₃) of **10h**

¹H NMR (400 MHz, CDCl₃) of **10j**

 ^{13}C NMR (101 MHz, CDCl₃) of 10j

¹H NMR (400 MHz, CDCl₃) of **10k**

¹H NMR (400 MHz, CDCl₃) of **10**

¹³C NMR (101 MHz, CDCl₃) of **10**

¹H NMR (400 MHz, DMSO-*d*₆) of **11a**

13 C NMR (101 MHz, DMSO- $d_6) of$ **11a**

¹H NMR (400 MHz, DMSO- d_6) of **11b**

13 C NMR (101 MHz, DMSO- $d_6) of$ **11b**

¹H NMR (400 MHz, DMSO-*d*₆) of **11b'**

¹³C NMR (101 MHz, DMSO-*d*₆) of **11b'**

¹H NMR (400 MHz, DMSO-*d*₆) of **11c**

¹H NMR (400 MHz, DMSO- d_6) of **11d**

¹³C NMR (151 MHz, DMSO-*d*₆) of **11d**

¹H NMR (400 MHz, DMSO-*d*₆) of **11e**

13 C NMR (151 MHz, DMSO- $d_6) of 11e$

¹H NMR (400 MHz, CDCl₃) of **11f**

¹³C NMR (101 MHz, CDCl₃) of **11f**

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

¹H NMR (400 MHz, DMSO- d_6) of **13**

¹³C NMR (101 MHz, DMSO-*d*₆) of **13**

