Synthesis and Discovery of Andrographolide Derivatives as

Nonsteroidal Farnesoid X Receptor (FXR) Antagonists

Zhuyun Liu,^{a,§} Wai-Kit Law,^b Decai Wang,^a Xin Nie,^a Dekuan Sheng,^a Genrui Song,^a Kai Guo,^c Ping Wei,^c Pingkai Ouyang,^c Chi-Wai Wong,^{*,b} Guo-Chun Zhou^{*,a}

^a School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China

^b NeuMed Pharmaceuticals Limited, Shatin, N.T., Hong Kong, PR China

^c College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China [§] Current address: Department of Pharmaceutical and Chemical Engineering, Taizhou Polytechnic College, Taizhou 225300, Jiangsu, PR China

Corresponding Authors:

*(G.-C.Z.) Tel: 86-25-58139415, E-mail: <u>gczhou@njtech.edu.cn</u>; *(C.-W.W.) Tel: 852-67487218, E-mail: <u>wongcw@neumedpharma.com.hk</u>

Contents:

¹H NMR and ¹³C NMR spectra

Table s1	-s2
Compounds 6-9	-s3-s6
Compounds 10a-10i	s7-s15
Compounds 11b and 11g	s16-s17
Compounds 12a-12i	s18-s26
Compounds 13b and 13g	s27-s28

entry	cmpd ^{a)}	R	14-isomer	MW	H-bond donors	H-bond acceptors	ClogP ^{b)}
1	10a	Н	β	466.6	0	5	6.5108
2	12a	Н	β	426.5	2	5	4.4698
3	10b	4'-NO ₂	β	511.6	0	8	6.5538
4	12b	4'-NO ₂	β	471.5	2	8	4.5128
5	10c	3'-NO ₂	β	511.6	0	8	6.5538
6	12c	3'-NO ₂	β	471.5	2	8	4.5128
7	10d	2'-NO ₂	β	511.6	0	8	6.5538
8	12d	2'-NO ₂	β	471.5	2	8	4.5128
9	10e	2'-CO ₂ Et	β	538.7	0	7	7.0238
10	12e	2'-CO ₂ Et	β	498.6	2	7	4.9828
11	10f	2'-OCH ₃	β	496.6	0	6	6.2498
12	12f	2'-OCH ₃	β	456.6	2	6	4.2088
13	10g	2'-OCH ₃ -4'-NO ₂	β	541.6	0	9	6.2723
14	12g	2'-OCH ₃ -4'-NO ₂	β	501.6	2	9	4.2313
15	10h	2'-CH ₃ -4'-NO ₂	β	525.6	0	8	7.0528
16	12h	2'-CH ₃ -4'-NO ₂	β	485.6	2	8	5.0118
17	10i	2'-F-4'-NO ₂	β	529.6	0	9	6.5458
18	12i	2'-F-4'-NO ₂	β	489.5	2	9	4.5048
19	11b	4'-NO ₂	α	511.6	0	8	6.5538
20	13b	4'-NO ₂	α	471.5	2	8	4.5128
21	11g	2'-OCH ₃ -4'-NO ₂	α	541.6	0	9	6.2723
22	13g	2'-OCH ₃ -4'-NO ₂	α	501.6	2	9	4.2313
23	23 1, andrographolide		α	350.4	3	5	2.1186
24		5	α	390.5	1	5	4.1598
25		6	β	432.5	0	6	5.0182
26		7	β	392.5	2	6	2.9772
27		8	β	350.4	3	5	2.1186
28		9	β	390.5	1	5	4.1598

^{*a*)} See Scheme 2. ^{*b*)} calculated by Chem3D Ultra 8.0.

NMR spectra

¹H NMR of **Compound 6:**

¹³C NMR of **Compound 6:**

¹H NMR of **Compound 7:**

¹³C NMR of **Compound 7**:

¹H NMR of **Compound 8:**

¹³C NMR of **Compound 8:**

¹H NMR of **Compound 9:**

¹H NMR of **Compound 10a:**

¹³C NMR of **Compound 10a:**

¹H NMR of **Compound 10b:**

¹H NMR of **Compound 10c:**

¹H NMR of **Compound 10d:**

¹H NMR of **Compound 10e:**

¹H NMR of **Compound 10f:**

¹H NMR of **Compound 10g:**

¹H NMR of **Compound 10h:**

¹³C NMR of **Compound 10h:**

¹H NMR of **Compound 10i:**

¹H NMR of **Compound 11b:**

¹H NMR of **Compound 11g:**

¹H NMR of **Compound 12a:**

¹³C NMR of **Compound 12a:**

¹H NMR of **Compound 12b:**

 $\begin{array}{c} & & 8.28 \\ & & 8.28 \\ & & 8.28 \\ & & 8.28 \\ & & 8.28 \\ & & 8.26 \\ & &$

¹³C NMR of **Compound 12b:**

¹H NMR of **Compound 12c:**

¹H NMR of **Compound 12d:**

¹H NMR of **Compound 12e:**

¹H NMR of **Compound 12f:**

¹H NMR of **Compound 12g:**

¹H NMR of **Compound 12h:**

 $\begin{array}{c} & 8.15 \\ & 8.14 \\ & 8.13 \\ & 8.14 \\ & 8.13 \\ & 8.14 \\ & 8.13 \\ & 8.14 \\ & 8.13 \\ & 8.14 \\ & 8.15 \\ & 6.76 \\ & 6.$

¹H NMR of **Compound 12i:**

¹H NMR of **Compound 13b:**

¹H NMR of **Compound 13g:**

