Imine-Linked Chemosensors for the Estimation of Zn²⁺ in Biological Samples

Preeti Saluja^a, Vimal K. Bhardwaj^a, ThangarasuPandiyan^c, Simanpreet Kaur^b, NavneetKaur^{b,*}, Narinder Singh^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Panjab, India, 140001. E-mail: <u>nsingh@iitrpr.ac.in</u> ^bFacultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510.México D.F., México. ^cCentre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh, 160014, India. E-mail: <u>navneetkaur@pu.ac.in</u>

Figure S2: ¹³C NMR spectrum of sensor 1 in CDCl₃.

Figure S3: IR spectrum of sensor 1.

Figure S4: Mass spectrum of sensor 1 with peak at 372.4 corresponds to $[M+1]^+$ peak.

Figure S5: (A) UV-Vis absorption spectrum of sensor **1** (5 μ M) and (B) Fluorescent response of sensor **3** (5 μ M); with variation of pH in aqueous 1% triton-X-100 solution (inset showing the pH values).

Figure S6: Effect of increasing ionic strength on (A) UV-Vis absorption profile; (B) Fluorescence emission profile of sensor $1(5 \ \mu M)$ in aqueous 1% triton-X-100 solution.

Figure S7: Fluorescence ratio $(I-I_0)/I_0$ of sensor **3** (5 μ M) at 440 nm upon addition of 50 μ M of different metal ions in aqueous 1% triton-X-100 solution; excitation wavelength was 320 nm

Figure S8: (A) Mass spectra of complex $1.Zn^{2+}$ with peak at m/z value 269.4 corresponds to $[M+1]^{2+}$, where M is $[1+Zn^{2+}+NO_3^{-}+CH_3CN]$ (B) Job's plot for complex formed between receptor 1 and Zn^{2+} . The fluorescence intensity at 440 nm was used for calculations. The concentration of [HG] was calculated by the equation [HG] = $\Delta I/I_0X$ [H].

Figure S9:Calculation of binding constant using Benesi-Hildebrand plot with fluorescence titration data.

Figure S10: Calculation of detection limit for estimation of Zn^{2+} by sensor 1.

Figure S11A: ¹H NMR spectrum of sensor 2 in CDCl₃

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Figure S11B: ¹³C NMR spectrum of sensor 2 in CDCl₃.

Figure S11C: IR spectrum of sensor 2.

Figure S12A: ¹H NMR spectrum of sensor 3 in CDCl₃.

Figure S12B: ¹³C NMR spectrum of sensor 3 in CDCl₃.

Figure S12C: IR spectrum of sensor 3.

Figure S13:(A)UV-Vis absorption spectra of **2** (10 μ M); (B) Fluorescence emission spectra of **2**(10 μ M) in presence of different metal ions (50 μ M) in aqueous 1% triton-X-100 solution; excitation wavelength was 310 nm.

Figure S14:(A)UV-Vis absorption spectra of 3 (10 μ M); (B) Fluorescence emission spectra of 310 μ M) in presence of different metal ions (50 μ M) in aqueous 1% triton-X-100 solution; excitation wavelength was 320 nm

Figure S15: Fluorescence behaviour of $1.Zn^{2+}$ complex with variation of pH in aqueous 1% triton-X-100 solution.

Table S1. Fotal energy values of the keto and enol forms of a	of the keto and enol forms of 3.
--	----------------------------------

Molecule	Total Energy (a.u.)
Enol form of 3	-1107.0415
Keto form of 3	-1107.0422