A facile synthesis of β -amino carbonyl compounds through an

aza-Michael addition reaction under solvent-free conditions

Chao Huang,*^{ab} Yanqing Yin,^a Jiahui Guo,^a Jiong Wang,^{ab} Baomin Fan,^{ab} Lijuan Yang*^{ab}

^aKey Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming, 650500, China
^bEngineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan University of Nationalities, Kunming, 650500, China
*Corresponding author. Tel.: +86 871 65910017; fax: +86 871 65910017.
E-mail: huang.chao@hotmail.com (C. Huang)

Supporting Information

Table of Contents

General Method	2
General Procedure for the Synthesis of oxanorbornene β -amino esters 3	3
General Procedure for the Synthesis of β -enamine esters 4	3
Synthesis of β -amino carbonyl compounds 3h and 4a	3
¹ H and ¹³ C NMR Spectra of Compounds 3a-3k , 4a-4f	5
References	20

General Method

All compounds were fully characterized by spectroscopic techniques. The NMR spectra were recorded on a Bruker-Avance 400 MHz spectrometer (¹H: 400 MHz, ¹³C: 100 MHz) with tetramethylsilane (TMS) as the internal standard (δ 0.0 ppm), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz. Deuterated CDCl₃ was used as a solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using neutral alumina. The melting points were determined on an XT-4A melting point apparatus and are uncorrected. HRMS was performed on an Agilent LC-MSD TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on neutral alumina.

Preparatiotion of diethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarbox ylate 1.

Diethyl acetylenedicarboxylate 12 mmol and furan 60 mmol were placed in a sealed tube, which was heated at 100 °C for 20 hours. The reaction mixture was distilled under vacuum. The endoxide was obtained as a light yellow oil.¹

General Procedure for the Synthesis of oxanorbornene β-amino esters 3.

A schlenk was charged with 1 (0.4 mmol, 95.3 mg), amine 2 (0.8 mmol), and the solution was stirred for 1 minute to 6 days at room temperature until the 1 was completely consumed. The mixture was purified by flash column chromatography. The desired compounds (3a-3j) were formed from 1 in yields: 54-97%.

General Procedure for the Synthesis of β-enamine esters 4.

A Schlenk was charged with diethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate 1 (0.4 mmol, 95.3 mg), amine 2 (0.8 mmol), and the solution was stirred for 1 minute to 6 days at 90 $^{\circ}$ C until 1 was completely consumed. The mixture was purified by flash column chromatography. The desired compounds 4 were formed from 1 in yields 42-77%.

Synthesis of β-amino carbonyl compounds 3h and 4a

The β -amino carbonyl compound **4a** was prepared during the formation of β -amino carbonyl compound **3h**. According to experimental results (scheme 1), **4a** and **5** can be obtained directly with 42% yield from oxabornene 1 and aniline **2a** under room temperature without reagent and catalyst. Also, compound **4a** and **5** were obtained from thermal degradation of **3h** at 90 °C, identified by spectroscopy.

Scheme 1. Synthesis of β-amino carbonyl compounds 3h and 4a

Diethyl 2-(phenylamino)-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (3h):

Yield 62%; White solid; mp: 107-108 °C; IR (KBr) (v_{max} , cm⁻¹) 3385, 2974, 2331, 1735, 1604, 1511, 1449, 1377, 1321, 1254, 1062, 1011, 859, 749, 689, 551 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.16 (2H, m), 6.84-6.80 (4H, m), 6.47-6.46 (1H, dd, J = 5.8, 1.9 Hz), 5.15-5.14 (1H, m), 5.06-5.05 (1H, m), 4.41 (1H, s), 4.20-4.09 (4H, m), 3.19 (1H, d, J = 4.4Hz), 1.30 (3H, t, J = 7.2 Hz), 1.15 (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 169.8, 144.9, 138.3, 132.3, 129.1, 119.5, 115.8, 86.5, 80.6, 72.4, 61.9, 61.2, 58.2, 14.1, 14.0. HRMS (TOF ES⁺): m/z calcd for C₁₈H₂₂NO₅⁺ [(M+H)⁺], 332.1492; found, 332.1483.

Diethyl 2-(phenylamino)maleate (4a):

Yield 77%; Yellow oil; IR (KBr) (v_{max} , cm⁻¹) 3279, 2984, 2344, 1735, 1668, 1607, 1498, 1382, 1274, 1208, 1137, 1039, 861, 755, 693, 553 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.68 (1H, s), 7.30-7.25 (2H, m), 7.11-7.07 (1H, m), 6.92 (2H, d, J = 7.7 Hz), 5.38 (1H, s), 4.22-4,13 (4H, m), 1.30 (3H, t, J = 7.1 Hz), 1.09 (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 164.5, 148.5, 140.5, 129.2, 124.3, 121.1, 93.9, 62.2, 60.1, 14.5, 13.7. HRMS (TOF ES⁺): m/z calcd for C₁₄H₁₇NO₄Na⁺ [(M+Na)⁺], 286.1050; found, 286.1055.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Figure 26¹³C NMR (100 MHz, CDCl₃) spectra of compound 4d

Figure 28¹³C NMR (100 MHz, CDCl₃) spectra of compound 4e

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2014

References

1. N. E. Leadbeater, S. J. Pillsbury, E. Shanahan, V. A. Williams, Tetrahedron, 2005,

61, 3565.