Supporting Information for

Aqueous organocatalyzed aldol reaction of glyoxylic acid for the enantioselective synthesis of α-hydroxy-γ-keto acids

Fernando J. N. Moles, Gabriela Guillena*, Carmen Nájera*

Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo.

99, Carretera de San Vicente s/n, E-03080-Alicante, Spain

Gabriela.guillena@ua.es, cnajera@ua.es

Table of Contents

General information	S2
General procedures for the aldol reaction	S2
Spectra data for aldol products	S4
HPLC data for aldol products	S9
NMR spectra for aldol products	S13
HPLC chromatograms for aldol products	S26
References	S37

General information: Catalysts 1 and 2 were prepared according to literature¹. All the reagents were commercially available and used without further purification. ¹H NMR (300 MHz, 400 MHz) and ¹³C NMR (75 MHz) spectra were obtained at 25 °C using CDCl₃ as solvent and chemical shifts are reported as δ values relative to TMS as internal standard. IR spectra were obtained with Jasco 4100 LE (Pike Piracle ATR). High resolution mass spectra (HRMS-ESI) were obtained on a Waters LCT Premier XE apparatus equipped with a time of flight (TOF) analyzer and the samples were ionized by ESI techniques and introduced through an ultra-high pressure liquid chromatography (UPLC) model Waters ACQUITY H CLASS. Optical rotations were measured on a Jasco P-1030 Polarimeter with a 5 cm cell (c given in g/100 mL). HPLC analyses were performed on equipped with a chiral column and automatic inyector, using mixtures of n-hexane/isopropyl alcohol (IPA) as mobile phase, at 25 °C. Analytical TLC was performed on silica gel plates and the spots were visualized using KMnO₄ solution as revelator. For flash chromatography we employed silica gel 60 (0.040-0.063 mm).

General procedures for the aldol reaction

General procedure for the aldehyde-ketone aldol reaction using glyoxylic acid monohydrate:

To a mixture of the glyoxylic acid monohydrate (0.25 mmol, 0.023 g), catalyst (10 mol%) and water (2.5 mmol, 0.045 mL) at the indicated temperature was added the corresponding ketone (0.5 mmol). The reaction was stirred until the glyoxylic acid was consumed (monitored by TLC). Then Me₃SiCHN₂ 2 M in diethyl ether (1 mmol, 0.5 mL) was added at the crude product. The corresponding mixture was stirred for 1 h, and the solvents were evaporated in vacuo. The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the pure aldol product. During purification the aldols **6c** and **6d** undergo an epimerisation and therefore the diastereoselectivities of the crude ¹H-RMN is different than the one showed in the HPLC or GC spectra.

General procedure for the aldehyde-ketone aldol reaction using glyoxylic acid 50%

aqueous solution:

To a mixture of the glyoxylic acid 50% aqueous solution (0.25 mmol, 0.027 mL) and catalyst (10 mol%) at the indicated temperature was added the corresponding ketone (0.5 mmol). The reaction was stirred until the glyoxylic acid was consumed (monitored by TLC). Then, Me₃SiCHN₂ 2 M in diethyl ether (1 mmol, 0.5 mL) was added at the crude product. The corresponding mixture was stirred for 1 h, and the solvents were evaporated in vacuo. The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the pure aldol product. During purification the aldols **6c** and **6d** undergo an epimerisation and therefore the diastereoselectivities of the crude ¹H-RMN is different than the one showed in the HPLC or GC spectra.

Procedure for the α -hydroxy- γ -keto acids preparation:

To a mixture of the glyoxylic acid monohydrate (0.25 mmol, 0.023 g) and catalyst **2a** (0.025 mmol, 0.013 g) at 0° C was added the corresponding ketone (0.5 mmol). The reaction was stirred until the glyoxylic acid was consumed (monitored by TLC). Then, ethyl acetate was added (10 mL), and the crude product was washed with H₂O (3x10 mL) the aqueous phase was evaporated to obtain the corresponding α -hydroxy- δ -keto acid with glyoxylic acid traces. The glyoxylic acid was precipitated using dioxane and the corresponding α -hydroxy- γ -keto acid was purified by passing it through a small silica gel pad and concentrated in vacuo.

Spectra data of aldol products

(*R*)-2-Hydroxy-2-[(*S*)-oxocyclohexyl]acetic acid (5a).² Data for the major Isomer (2*S*, 2'*R*). Colorless oil (0.020 g, 71%); $[\alpha]^{26}{}_{D} = -10$ (c = 0.9 in MeOH); $R_{f} = 0.1$ (EtOAc) (revealed with KMnO₄). ν_{max} /cm⁻¹ 3421 (CO₂H), 1714 (CO), 1702 (CO). δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.58 - 1.88 (3 H, m, H_{cyclo}), 1.90 - 2.05 (1 H, m, H_{cyclo}), 2.0.6 - 2.31 (2 H, m, H_{cyclo}), 2.31 - 2.56 (2 H, m, H_{cyclo}), 2.98 - 3.12 (1 H, m, <u>CH</u>CHOH), 4.18 (1 H, d, *J* = 3.1, <u>CH</u>OH). δ_{C} (75 MHz; CDCl₃; Me₄Si) 24.7 (CH₂), 27.2 (CH₂), 30.2 (CH₂), 42.0 (CH₂), 53.7 (CH), 70.4 (CH), 176.8 (C), 213.0 (C). *m/z* (IE) 172 (M⁺,2%), 136 (10), 126 (100), 109 (95), 97 (18), 81 (51).

(*R*)-2-Hydroxy-2-[(*S*)-2-oxocycloheptyl]acetic acid (5f).³ Data for the major Isomer (2*S*, 2'*R*). Colorless oil (0.012 g, 26%); $[\alpha]^{26}{}_{D} = -33$ (c = 1.1 in MeOH); $R_{f} = 0.1$ (EtOAc) (revealed with KMnO₄). v_{max} /cm⁻¹ 3351 (CO₂H), 1745 (CO), 1701 (CO). δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.19 - 1.36 (1 H, m, H_{cyclo}), 1.42 - 1.63 (2 H, m, H_{cyclo}), 1.71 - 1.74 (1 H, m, H_{cyclo}), 1.90 - 2.11 (4 H, m, H_{cyclo}), 2.46 - 2.79 (2 H, m, H_{cyclo}), 3.29 (1 H, d, *J* = 10.8, OH), 4.31 (1 H, d, *J* = 2.5, <u>CH</u>OH). δ_{C} (75 MHz; CDCl₃; Me₄Si) 23.1 (CH₂), 27.1 (CH₂), 28.8 (CH₂), 29.4 (CH₂), 43.8 (CH₂), 54.5 (CH), 71.2 (CH), 174.8 (C), 219.4 (C). *m/z* (IE) 186 (M⁺, 3%), 168 (20), 122 (100), 107 (74), 92 (18), 65 (48).

(*R*)-2-Hydroxy-4-oxopentanoic acid (5h).² Yellow oil (0.010 g, 30%); $[\alpha]^{26}_{D} = -10$ (c = 0.5 in CHCl₃); $R_f = 0.1$ (EtOAc) (revealed with KMnO₄). v_{max} /cm⁻¹ 3359 (OH), 1742 (CO), 1714 (CO), 1219 (CHOHCO). δ_H (300 MHz; CDCl₃; Me₄Si) 2.27 (3 H, s, <u>CH₃</u>), 3.01 (1 H, dd, J = 18.3, 6.5, CH_a<u>H</u>_b-CHOH), 3.10 (1 H, dd, J = 18.2, 4.4, C<u>H</u>_aH_b-CHOH), 4.54 (1 H, dd, J = 6.5, 4.5, <u>CH</u>OH). δ_C

(75 MHz; CDCl₃; Me₄Si) 30.4 (CH₃), 46.2 (CH₂), 66.6 (CH), 174.6 (C), 208.1 (C). *m/z* (IE) 132 (M⁺, 3%), 114 (18), 103 (12), 96 (100), 68 (26), 55 (8).

(*R*)-Methyl 2-hydroxy-2-[(*S*)-2-oxocyclohexyl]acetate (6a).⁴ Data for the major Isomer (2*S*, 2'*R*). Yellow oil. (0.036 g, 78%); $[\alpha]^{26}{}_{D} = -27$ (c = 1.3 in CHCl₃); $R_{f} = 0.23$ (Hex/EtOAc; 1:1) (revealed with KMnO₄). v_{max} /cm⁻¹ 3507 (OH), 1734 (CO), 1707 (CO), 1239 (OCH₃). δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.62 - 1.80 (2 H, m, H_{cyclo}), 1.84 - 2.03 (2 H, m, H_{cyclo}), 2.03 - 2.20 (2 H, m, H_{cyclo}), 2.23 - 2.48 (2 H, m, H_{cyclo}), 2.97 (1 H, ddd, J = 12.8, 5.9, 3.3, <u>CH</u>CHOH), 3.78 (3 H, s, OCH₃), 4.04 (1 H, d, *J* = 3.3, <u>CH</u>OH). δ_{C} (75 MHz; CDCl₃; Me₄Si) 24.8 (CH₂), 26.9 (CH₂), 30.1 (CH₂), 42.0 (CH₂), 52.5 (CH), 53.6 (CH₃), 71.1 (CH), 173.8 (C), 211.3 (C). *m/z* (IE) 186 (M⁺, 16%), 154 (19), 136 (17), 127 (100), 109 (20), 98 (36), 81 (81), 57 (30).

(*R*)-Methyl 2-hydroxy-2-[(*R*)-2-20xocyclopentyl]acetate (6b).² As a diastereomer mixture (43:57, *anti:syn*). Yellow oil (0.036 g, 84%); $[\alpha]^{26}_{D} = +20$ (c = 1.4 in CHCl₃); $R_f = 0.25$ (Hex/EtOAc 1:1) (revealed with KMnO₄). v_{max} /cm⁻¹ 3453 (OH), 1735 (CO), 1722 (CO), 1243 (OCH₃). δ_H (300 MHz; CDCl₃; Me₄Si) 1.86 - 1.72 (2 H, m, H_{cyclo}), 1.86 - 2.00 (4 H, m, H_{cyclo}), 2.00 - 2.14 (4 H, m, H_{cyclo}), 2.14 - 2.41 (4 H, m, H_{cyclo}), 2.51 - 2.62 (1 H, m, H_{cyclo}), 2.66 - 2.76 (1 H, m, H_{cyclo}), 3.81 (3 H, s, O<u>CH₃</u>, *syn*), 3.83 (3 H, s, O<u>CH₃</u>, *anti*), 4.34 (1 H, d, *J* = 3.4, *anti*), 4.73 (1 H, d, *J* = 2.5, *syn*). δ_C (75 MHz; CDCl₃; Me₄Si) 20.5 (CH₂), 217.9 (C), 20.7 (CH₂), 22.4 (CH₂), 25.9 (CH₂), 38.4 (CH₂), 38.5 (CH₂), 51.6 (CH), 51.9 (CH), 52.8 (2xCH₃), 68.8 (CH), 69.6 (CH), 173.9 (C), 174.6 (C), 217.7 (C). *m/z* (IE) 172 (M⁺, 3%), 154 (16), 140 (53), 122 (25), 113 (100), 95 (28), 85 (50), 67 (84), 57 (37).

(*R*)-Methyl 2-hydroxy-2-[(*S*)-4-oxotetrahydro-2H-pyran-3-yl]acetate (6c). As a diastereomer mixture (89:11, *anti:syn*).Yellow oil (0.040 g, 86%); $[\alpha]_{D}^{26} = -23$ (c = 1 in MeOH); $R_{f} = 0.28$

(Hex/EtOAc; 1:1) (revealed with KMnO₄). v_{max}/cm^{-1} 3471 (OH), 1737 (CO), 1712 (CO), 1121 (OCH₃). $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si; diastereomer mixture (70:30)) 2.31 - 2.72 (4 H, m, H_{cyclo}), 3.00 (1 H, ddd, $J = 9.8, 6.2, 3.6, \underline{CH}CHOH, syn$), 3.18 (1 H, ddd, $J = 10.9, 6.7, 3.1, \underline{CH}CHOH, anti$), 3.67 - 3.95 (10 H, m), 4.07 (1 H, d, $J = 3.1, \underline{CH}OH, anti$), 4.09 - 4.36 (4 H, m, H_{Cyclo}), 4.71 (1 H, d, $J = 3.6, \underline{CH}OH, syn$). $\delta_{\rm C}$ (75 MHz; CDCl₃; Me₄Si) 42.3 (2xCH₂), 52.8 (2xCH), 53.8 (CH₃), 54.4 (CH₃), 67.7 (CH₂), 67.8 (CH), 67.9 (CH), 68.0 (CH₂), 68.1 (CH₂), 69.8 (CH₂), 173.3 (C), 173.5 (C), 205.4 (C), 205.8 (C). HRMS (ESI) calculated for C₈H₁₂O₅: 188.0700 found: 189.0763 (M⁺ + H, recalculated 189.0763).

(*S*)-*tert*-Butyl 3-[(R)-1-hydroxy-2-methoxy-2-oxoethyl]-4-oxopiperidine-1-carboxylate (6d). As a diastereomer mixture (93:7, *anti:syn*).Yellow oil (0.038 g, 53%); $[\alpha]^{26}_{D} = -64$ (c = 1.2 in MeOH); $R_f = 0.18$ (Hex/EtOAc 1:1) (revealed with KMnO₄). v_{max}/cm^{-1} 3463 (OH), 1741 (CO), 1687 (CO), 1156 (OCH₃). δ_H (300 MHz; CDCl₃; Me₄Si) 1.49 (9 H, s, C(<u>CH₃</u>)₃, *syn*), 1.50 (9 H, s, C(<u>CH₃</u>)₃, *anti*), 2.21 -2.59 (4 H, m, H_{cyclo}), 2.80 - 3.58 (8 H, m, H_{cyclo}), 3.80 (3 H, s, O<u>CH₃</u>, *anti*), 3.82 (3 H, s, O<u>CH₃</u>, *syn*), 4.11 (1 H, dd, *J* = 6.2, 2.8, <u>CH</u>OH, *anti*), 4.70 (1 H, dd, *J* = 4.5, 3.4, <u>CH</u>OH, *syn*). δ_C (75 MHz; CDCl₃; Me₄Si) 28.3 (6xCH₃), 40.8 (CH₂), 40.9 (CH₂), 43.0 (2xCH₂), 45.2 (2xCH₂), 52.5 (2xCH₃), 52.8 (2xCH₃), 68.1 (CH), 68.7 (CH), 80.7 (2xC), 154.5 (2xC), 173.3 (C), 173.4 (C), 206.5 (C), 206.9 (C). HRMS (ESI) calculated for C₁₃H₂₁NO₆: 287.1369 found: 288.1446 (M⁺ + H, recalculated 288.1447).

(*R*)-Methyl 2-[(*R*)-2,5-dioxocyclohexyl]-2-hydroxyacetate (6e). As a diastereomer mixture (40:60, *anti:syn*). Brown oil (0.035 g, 70%); $[\alpha]^{26}{}_{D} = -15$ (c = 0.7 in MeOH); $R_{f} = 0.35$ (Hex/EtOAc 1:1) (revealed with KMnO₄). v_{max} /cm⁻¹ 3503 (OH), 1730 (CO), 1705 (CO), 1267 (OCH₃). δ_{H} (300 MHz; CDCl₃; Me₄Si) 2.49 - 3.19 (13 H, m, H_{cyclo}), 3.31 (1 H, ddd, J = 11.6, 6.2, 2.6, CHCHOH, anti), 3.83 (3 H, s, O<u>CH₃</u>, *syn*), 3.85 (3 H, s, O<u>CH₃</u>, *anti*), 4.15 (1 H, dd, J = 4.7, 2.6, CHOH, anti), 4.90 (1 H, dd, J = 3.9, 2.1, CHOH, syn). δ_{C} (75 MHz; CDCl₃; Me₄Si) 36.1 (CH₂), 36.3 (CH₂), 37.0 (CH₂), 37.5 (CH₂), 40.5 (2xCH₂), 48.8 (CH), 49.0 (CH), 53.0 (CH₃), 53.2 (CH₃), 69.8 (CH), 70.4 (CH), 173.2 (C),

173.4 (C), 207.2 (C), 207.3 (2xC), 207.4 (C). HRMS (ESI) calculated for $C_9H_{12}O_5$: 200.0685 found: 201.0753 (M⁺ + H, recalculated 201.0763).

(*R*)-Methyl 2-hydroxy-2-[(*S*))-2-oxocycloheptyl]acetate (6f). As a diastereomer mixture (94:6, *anti:syn*). Colorless oil (0.036 g, 84%); $[\alpha]^{26}{}_{\rm D}$ = -62.7 (c = 1.2 in MeOH); $R_{\rm f}$ = 0.26 (Hex/EtOAc 1:1) (revealed with KMnO₄). $v_{\rm max}$ /cm⁻¹ 3483 (OH), 1736 (CO), 1697 (CO), 1213 (OCH₃). $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.32 - 1.65 (6 H, m, H_{cyclo}), 1.73 - 2.08 (10 H, m, H_{cyclo}), 2.44 - 2.61 (4 H, m, H_{cyclo}), 2.96 (1 H, dt, *J* = 10.6, 3.4, <u>CH</u>CHOH, *syn*), 3.08 (1 H, dt, *J* = 10.8, 3.2, <u>CH</u>CHOH, *anti*), 3.18 (1 H, d, *J* = 4.6, OH, *syn*), 3.29 (1 H, d, *J* = 7.2, OH, *anti*), 3.80 (3 H, s, O<u>CH₃</u>, *anti*), 3.81 (3 H, s, O<u>CH₃</u>, *syn*), 4.23 (1 H, dd, *J* = 7.1, 3.4, <u>CH</u>OH, *anti*), 4.56 (1 H, dd, *J* = 4.5, 3.3, <u>CH</u>OH, *syn*). $\delta_{\rm C}$ (75 MHz; CDCl₃; Me₄Si) 23.9 (CH₂), 24.1 (CH₂), 25.8 (CH₂), 28.2 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.8 (2xCH₂), 43.8 (CH₂), 44.1 (CH₂), 52.6 (2xCH), 55.0 (CH₃), 55.2 (CH₃), 72.1 (CH), 73.7 (CH), 173.9 (C), 174.0 (C), 214.5 (C), 215.1 (C). HRMS (ESI) calculated for C₁₀H₁₆O₄: 200.1049 found: 201.1126 (M⁺ + H, recalculated 201.1127).

(*R*)-Methyl 2-hydroxy-2-[(*S*)-2-oxocyclobutyl]acetate (6g). As a diastereomer mixture (76:24, *anti:syn*). Colorless oil (0.014 g, 35%); $[\alpha]^{26}_{D} = -16$ (c = 0.8 in MeOH); $R_f = 0.4$ (Hex/EtOAc 1:1) (revealed with KMnO₄). v_{max} /cm⁻¹ 3502 (OH), 1779 (CO), 1731 (CO), 1083 (OCH₃). δ_H (300 MHz; CDCl₃; Me₄Si; diastereomer mixture (1:1)) 1.97 - 2.32 (4 H, m, H_{cyclo}), 2.93 - 3.13 (6 H, m, H_{cyclo}), 3.83 (3 H, s, O<u>CH₃</u>, *anti*), 3.86 (3 H, s, O<u>CH₃</u>, *anti*), 4.32 (1 H, dd, $J = 4.4, 4.4, \underline{CHOH}$, *anti*), 4.63 (1 H, dd, $J = 4.5, 2.9, \underline{CHOH}$, *syn*). δ_C (75 MHz; CDCl₃; Me₄Si; diastereomer mixture (1:1)) 11.0 (CH₂), 13.5 (CH₂), 46.0 (CH₂), 46.4 (CH₂), 53.0 (2xCH), 62.3 (2xCH₃), 67.6 (CH), 68.5 (CH), 173.2 (C), 173.6 (C), 207.7 (2xC). HRMS (ESI) calculated for C₇H₁₀O₄: 158.0600 found: 159.0654 (M⁺ + H, recalculated 159.0657).

(*R*)-Methyl 2-hydroxy-4-oxopentanoate (6h).² Yellow oil (0.018 g, 50%); $[\alpha]^{26}_{D} = -18$ (c = 0.8 in CHCl₃); $R_f = 0.3$ (Hex/EtOAc 1:1) (revealed with KMnO₄). v_{max}/cm^{-1} 3311 (OH), 1735 (CO), 1717 (CO), 1237 (CHOHCO). δ_H (300 MHz CDCl₃; Me₄Si) 2.21 (3 H, s, <u>CH₃</u>), 2.91 (1 H, dd, $J = 17.6, 6.1, CH_aH_b$ -CHOH), 3.00 (1 H, dd, $J = 17.6, 4.0, CH_aH_b$ -CHOH), 3.80 (3 H, s, O<u>CH₃</u>), 4.49 (1 H, dd, J = 6.0, 4.0, CHOH). δ_C (75 MHz; CDCl₃; Me₄Si) 30.5 (CH₃), 46.7 (CH₂), 52.7 (CH), 66.9 (CH₃), 174.0 (C), 206.2 (C). *m/z* (IE) 146 (M⁺, 6%), 114 (13), 103 (12), 87 (100), 71 (15), 55 (12).

(2*R*,3*S*)-Methyl 2-hydroxy-3-methyl-4-oxopentanoate (6i).² As a diastereomer mixture (90:10, *anti:syn*). Colorless oil (0.010 g, 22%); $[\alpha]^{26}_{D} = -27$ (c = 1.2 in MeOH); $R_f = 0.4$ (Hex/EtOAc 1:1) (revealed with KMnO₄). v_{max} /cm⁻¹ 3473 (OH), 1737 (CO), 1711 (CO), 1212 (OCH₃). δ_H (300 MHz; CDCl₃; Me₄Si; diastereomer mixture (40:60)) 1.18 (3 H, d, *J* = 7.2, CH<u>CH₃</u>, *anti*), 1.31 (3 H, d, *J* = 7.4, CH<u>CH₃</u>, *syn*), 2.21 (3 H, s, CO<u>CH₃</u>, *syn*), 2.26 (3 H, s, CO<u>CH₃</u>, *anti*), 2.89 - 3.12 (3 H, m), 3.20 (1 H, d, *J* = 7.6, OH, *anti*), 3.80 (3 H, s, O<u>CH₃</u>, *syn*), 3.83 (3 H, s, O<u>CH₃</u>, *anti*), 4.25 (1 H, dd, *J* = 6.7, 4.2, CHOH, *anti*), 4.63 (1 H, dd, *J* = 3.6, 3.5, CHOH, *syn*). δ_C (75 MHz; CDCl₃; Me₄Si; with traces of *iso* aldol) 10.5 (CH₃), 13.0 (CH₃), 28.3 (CH), 28.8 (CH₃), 49.9 (CH), 52.6 (CH), 52.7 (CH₃), 52.8 (CH₃), 71.0 (CH), 72.6 (CH), 173.7 (C), 174.1 (C), 209.2 (C), 210.5 (C). *m/z* (IE) 160 (M⁺, 4%), 128 (7), 117 (18), 101 (78), 85 (43), 69 (100), 57 (36).

(*R*)-methyl 2-hydroxy-2-((1*S*,5*S*)-5-methyl-2-oxocyclohexyl)acetate (6j)⁵. As a diastereomer mixture (84:12:2:2). Yellow oil. (0.040 g, 80%); $[\alpha]^{26}{}_{D} = -38$ (c = 1.3 in MeOH); $R_{f} = 0.33$ (Hex/EtOAc 1:1) (revealed with KMnO₄). v_{max} /cm⁻¹ 3489.6 (OH), 1736.6 (C=O), 1707.7 (C=O), 1127.2 (OCH₃). Data for the major isomer (1*S*, 5*S*, 2'*R*). δ_{H} (300 MHz, CDCl₃) 1.20 (d, *J* = 7.0 Hz, 3 H, CH<u>CH₃</u>), 1.68 – 2.09 (m, 3 H, H_{cyclo}), 2.09 – 2.54 (m, 4 H, H_{cyclo}), 3.02 - 3.12 (m, 2 H), 3.79 (s, 3 H, O<u>CH₃</u>), 4.04 (dd, *J* = 7.5, 3.6 Hz, 1 H, <u>CH</u>OH). δ_{C} (75 MHz, CDCl₃, with traces of minority aldol) 18.2 (CH₃), 26.7

(CH), 32.2 (CH₂), 35.6 (CH₂), 37.7 (CH₂), 49.3 (CH), 52.6 (CH₃), 71.4 (CH), 173.8 (C), 211.7 (C). *m/z* (IE) 200 (M⁺, 12), 168 (9), 141 (100), 123 (24), 112 (29), 95 (62), 55 (28).

HPLC data for aldol products

The ee was determined by chiral GC analysis with a Cyclohexil- β column (130 °C, 13.4 Psi,), R_t= 49.5 min (minor *anti*), R_t= 50.7 min (major *anti*), R_t= 68.2 min (minor *syn*), R_t= 69.5 min (major *syn*).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (120 °C, 13.4 Psi), $R_t = 23.2 \text{ min}$ (major *anti*), $R_t = 25.2 \text{ min}$ (minor *anti*), $R_t = 38.7 \text{ min}$ (major *syn*), $R_t = 40.6 \text{ min}$ (minor *syn*).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (140 °C, 13.4 Psi), $R_t = 17.3 \text{ min}$ (major *anti*), $R_t = 18.0 \text{ min}$ (minor *anti*), $R_t = 22.5 \text{ min}$ (minor *syn*), $R_t = 24.0 \text{ min}$ (major *syn*).

The ee was determined by chiral HPLC on Chiralpak IA column (90% hexane, 10% EtOH, 25°C, 1 mL/min, 210 nm, R_t = 15.5 min (major *anti*), R_t = 18.2 min (minor *syn*), R_t = 20.1 min (minor *syn*), R_t = 32.8 min (minor *anti*).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (140 °C, 13.4 Psi), $R_t = 68.4 \text{ min}$ (minor *syn*), $R_t = 70.7 \text{ min}$ (major *syn*), $R_t = 80.5 \text{ min}$ (major *anti*), $R_t = 84.3 \text{ min}$ (minor *anti*).

The ee was determined by chiral GC analysis with a CYCLOHEXIL β column (150 °C, 13.4 Psi), R_t = 32.3 min (minor *anti*), R_t = 32.9 min (major *anti*), R_t = 38.9 min (major *syn*), R_t = 40.5 min (minor *syn*).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (120 °C, 13.4 Psi), $R_t = 14.5 \text{ min} \text{ (major anti)}$, $R_t = 15.5 \text{ min} \text{ (minor anti)}$, $R_t = 25.4 \text{ min} \text{ (syn)}$.

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (120 °C, 13.4 Psi), $R_t = 15.1 \text{ min}$ (major), $R_t = 15.4 \text{ min}$ (minor).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (100 °C, 13.4 Psi), $R_t = 27.1 \text{ min}$ (minor *anti*), $R_t = 28.8 \text{min}$ (minor *syn*), $R_t = 29.9 \text{ min}$ (major *syn*), $R_t = 32.1 \text{ min}$ (major *anti*).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (160 °C, 13.4 Psi,), $R_t = 64.1 \text{ min} \text{ (mayor anti)}$, $R_t = 70.1 \text{ min} \text{ (minor anti)}$.

NMR spectra for aldol products

$\begin{array}{c} 4.64\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.33\\$

HPLC spectra for aldol products

6a-Rac

6a

4 69.481 FM

0.6566

30.40747 7.71833e-1 2.21311

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

6b-Rac

	2	23.647	MM	0.2768	30.38864	1.82959	14.06841
	3	37.133	MF	0.4455	77.59990	2.90294	35.92483
	4	38.138	FM	0.5303	77.46426	2.43467	35.86204
0	、 、	ОН					

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[pA*s]	[pA]	જ	
							l
1	23.183	MM	0.4649	450.15494	16.13661	36.21613	
2	25.237	MM	0.3096	65.12729	3.50576	5.23966	
3	38.736	MF	1.0197	660.32147	10.79224	53.12457	
4	40.642	FM	0.6878	67.36445	1.63227	5.41964	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	17.350	MM	0.3132	360.93735	19.21000	88.73807
2	22.531	MM	0.2376	18.47092	1.29574	4.54116
3	24.041	MM	0.2667	27.33636	1.70845	6.72077

	[min]		[min]	[mAU*s]	[mAU]	8
1	15.558	'мм т	0.4899	2716.68042	92.41472	88.5556
2	18.191	ММ Т	0.4311	146.43019	5.67513	4.7732
3	20.078	MM T	0.4371	89.02989	3.39460	2.9021
4	32.812	ММ Т	0.5756	115.62706	3.34790	3.7691

Peak	Recifie	Type	WIGCH	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	응
1	68.404	MM	0.9405	142.17714	2.51963	8.16619
2	70.752	MM	1.9030	908.20551	7.95434	52.16437
3	80.461	MF	1.9604	593.62891	5.04675	34.09611
4	84.273	FM	2.0733	97.03407	7.80025e-1	5.57332

6f-Rac

rean	Recitine	TYPE	Wilden	Area	nergiic	Arca
#	[min]		[min]	[pA*s]	[pA]	00
1	32.270	MF	0.2958	611.40002	34.44358	27.67560
2	32.946	FM	0.2977	613.89917	34.37333	27.78872
3	38.949	MM	0.3456	489.89716	23.62557	22.17565
4	40.497	MM	0.3711	493.97028	22.18338	22.36003

6f

#	[min]		[min]	[pA*s]	[pA]	10
1	32.786	MF	0.3961	206.02478	8.66811	2.00105
2	33.544	FM	0.4963	9493.96777	318.84433	92.21191
3	39.223	MM	0.3455	295.68298	14.26475	2.87188
4	40.815	MM	0.3615	300.14005	13.83815	2.91517

6g-Rac

Реак	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	00
1	14.450	MF	0.2297	114.84156	8.33231	24.72589
2	15.336	FM	0.2604	115.70503	7.40444	24.91180
3	24.867	MM	0.6926	233.91209	5.62876	50.36230

6g

±	T4.000	PIL	0.2203	42.41401	3.20432	07.02430
2	15.499	FM	0.2729	5.30788	3.24186e-1	8.19437
3	25.359	MM	0.5212	16.05197	5.13341e-1	24.78125

#	LUUTII		LUUTII	[PA"S]	[PA]	0
1	15.131	MF	0.1515	30.09142	3.30964	74.49210
2	15.464	FM	0.1553	10.30403	1.10585	25.50790

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	26.933	MM	0.3969	81.97029	3.44234	18.77503
2	28.501	MF	0.4293	100.63720	3.90686	23.05062
3	29.584	FM	0.4978	102.20137	3.42181	23.40889
4	32.114	MM	0.5180	79.06306	2.54395	18.10914
5	34.785	MM	0.5022	35.65242	1.18314	8.16607
6	37.972	MM	0.5772	37.06779	1.07034	8.49026

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %
1	27.159	MM	0.3275	3.86827	1.96871e-1	4.38192
2	28.858	MM	0.3082	2.45616	1.32814e-1	2.78230
3	29.946	MM	0.3544	5.38807	2.53362e-1	6.10353
4	32.113	MM	0.4639	47.75608	1.71563	54.09748
5	34.707	MM	0.5555	25.04833	7.51521e-1	28.37443
6	38.055	MM	0.3740	3.76092	1.67589e-1	4.26033

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	00
1	48.388	MM	0.7735	150.69901	3.24710	13.72837
2	52.443	MM	0.8342	148.77864	2.97237	13.55343
3	53.956	FM	1.0429	41.09580	6.56759e-1	3.74374
4	59.777	MM	1.0613	40.15648	6.30612e-1	3.65817
5	69.424	MM	0.9790	26.67677	4.54170e-1	2.43020
6	75.125	MF	1.4607	323.71423	3.69350	29.48971
7	77.855	FM	2.1456	338.33914	2.62813	30.82200
8	86.451	MM	1.0884	28.25940	4.32753e-1	2.57437

7

80.220 FM

1.2880

11.14160 1.44173e-1 1.65432

References

¹ a) G. Guillena, M. C. Hita, C. Nájera and S. F. Viozquez, *J. Org. Chem.* 2008, **73**, 5933. b) S. F. Viozquez, G. Guillena, C. Nájera, B. Bradshaw, G. Etxebarria-Jardi and J. Bonjoch, *Org. Synth.* 2011, **88**, 317.

² T. Loh, L. Feng and L. Wei, *Tetrahedron*, 2001, **57**, 4231.

³ Supplier Name: FCH Group, Catalog Publication Date: 14 Sep 2012 Order Number: FCH1237125 CAS Registry Number: 1378713-26-8

⁴ S. Tsuboi, E. Nishiyama, H. Furutani, M. Utakam and A.Takeda, J. Org. Chem. 1987, **52**, 1359.

⁵ Stanek, M.; Hildebrand, P.; Zimmermann, C.; Castelijns, M. From PCT Int. Appl. (2001), WO 2001094329 A1 20011213