Copper catalyzed three-component synthesis of

benzothiazolones from o-iodoanilines, DMF, and potassium sulfide

Yuan Yang, Xiaoyun Zhang, Weilan Zeng, Hui Huang, Yun Liang*

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China; Beijing National Laboratory for Molecular Sciences, Beijing 100871, China.

E-mail: <u>yliang@hunnu.edu.cn</u>

Fax: +86(0731)88872533

Supporting Information

1) General Information	S2
2) Synthesis of Starting Materials	S2-S3
3) Typical Procedures	S3-S4
4) Experiments of investigating the reaction mechanism	S4-S5
5) Characterization Data	S5-S13
6) References	S13-S14
7) Scanned ¹ H NMR and ¹³ C NMR Spectra of All New Compounds	S15-S41

1) General Information

NMR spectra of the products **2** and **4b**–**4g** were obtained using Bruker Avance-500 instruments, calibrated to TMS (¹H NMR spectra) and CD(H)Cl₃ (¹³C NMR spectra) as the internal reference (0.00 ppm for ¹H NMR spectra and 77.00 ppm for ¹³C NMR spectra). NMR spectra of the product **4h-4k** was recorded using Bruker Avance-500 instruments, calibrated to residual DMSO-*d*₆ as the internal reference (2.50 ppm for ¹H NMR spectra and 40.00 ppm for ¹³C NMR spectra). High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization). Melting points were measured uncorrected. Reactions were monitored by thin-layer chromatography or GC-MS analysis. Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel (200-300 mesh). Unless otherwise noted, all reactions were run under nitrogen atmosphere.

2) Synthesis of Starting Materials

Preparation of 1a and 3b-3g:¹

$$R_{U} \xrightarrow{H} H_{2} + CH_{3}I \xrightarrow{K_{2}CO_{3}} R_{U} \xrightarrow{H} H_{1}$$

To a solution of the corresponding o-iodoaniline (1.2 equiv) and iodomethane (2 mmol) in DMF (10 mL) was added K_2CO_3 (2 equiv). The resulting mixture was stirred at room temperature for 36 h. Water (10 mL) was added to the reaction mixture. The resulting solution was extracted with diethyl ether (3 × 10 mL). The organic layers were combined and washed with water to remove any remaining DMF and dried over anhydrous Na₂SO₄. The solvent was removed under vaccum and the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent.

Preparation of 1b-1e, 1l-1o and 1q:²

$$H_{I} + RNH_{2} \xrightarrow{Pd(OAc)_{2}, DPEphos} H_{I} R (R = Ph, Alkyl), Phenylethyl)$$

To a schlenk tube were added 1,2-iodobenzene (3 mmol), the corresponding amine (1.5 equiv), $Pd(OAc)_2$ (0.5 mol%), DPEphos (0.75 mol%), NaOtBu (1.5 equiv) and toluene (8 mL). The resulting mixture was stirred 100 °C for 24h. the reaction mixture was filtered by a crude column with ethyl acetate as eluent, and evaporated under vacuum. the residue was purified by column chromatography on silica gel to provide the desired product.

Preparation of 1f-1k:³

To a schlenk tube were added o-iodoaniline (1.2 equiv), the corresponding benzyl bromide (2mmol), NaHCO₃ (2 equiv), and EtOH (10 mL). The resulting mixture was stirred at room temperature for overnight. After completion of the reaction, the reaction mixture was filtered by a crude column with ethyl acetate as eluent, and evaporated under vacuum. the residue was purified by column chromatography on silica gel to provide the desired product.

3) Typical Procedures

To a schlenk tube were added *o*-haloanilines (0.3 mmol), K_2S (3 equiv), $CuBr_2$ (10 mol%), and DMF (2 mL). Then under the protection of nitrogen, the mixture was stirred at 120 °C (oil bath temperature) for the indicated time until complete

consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in ethyl acetate, and washed with water. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 15:1) to afford the desired product.

4) Experiments of investigating the reaction mechanism

Scheme 1 2-Aminobenzenethiol React with DMF

Scheme 2 2-Aminobenzenethiol React with CO

Firstly, 2-aminothiophenol was treated with DMF in the presence of CuBr₂, and there was no benzothiazolone product found in the reaction mixture (scheme 1, eq 1). Importantly, when K₂S was added in the above experiment, 48% of benzothiazolone was obtained (scheme 1, eq 2). Surprised, 46% of benzothiazolone was given in the absence of CuBr₂ in the above reaction (scheme 1, eq 3). For these results we inferred that K_2S played a key role in carbonylation reaction, and that copper catalyst are not involved in carbonylation reaction. Owing to a small amount of sulfur observed in the experiment 2 and 3, we assume it is not K₂S but sulfur that promoted the carbonylation process.⁴ In order to prove our hypothesis, the reaction 2-aminothiophenol with sulfur was run in DMF, and 78% benzothiazolone was afforded (scheme 1, eq 4). Subsequently, we found that 13% of sulfur was afforded when K₂S and equivalent H₂O reacted in DMF (scheme 1, eq 5). Finally, 2-aminothiophenol was treated with CO in DMSO, no product benzothiazolone was found in the reaction mixture (scheme 2, eq 1). Similarly, when K₂S was added in this reaction, 41% of benzothiazolone was isolated (scheme 2, eq 2). These results proved the above results again.

5) Characterization Data

3-methylbenzo[*d*]thiazol-2(3H)-one (2a):⁵ Pale yellow solid, isolated yield 77% (38.1 mg); mp: 69.7-70.7 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.42 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.33 (td, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.17 (td, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 3.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 170.00, 137.65, 126.31, 123.15, 122.48, 122.45, 110.36, 28.92; IR (KBr): 1679 (C=O) cm⁻¹.

 C_3H_7

C₅H₁₁

C₈H₁₇

3-propylbenzo[*d*]**thiazol-2(3H)-one (2b):**⁵ Pale yellow oil, isolated yield 68% (39.4 mg); ¹H NMR (500 MHz, CDCl₃) δ : 7.42 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.31 (td, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.15 (td, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 3.91 (t, *J* = 7.5 Hz, 2H), 1.81-1.74 (m, 2H), 0.99 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.87, 137.13, 126.16, 122.86, 122.73, 122.55, 110.54, 44.24, 20.89, 11.18; IR (KBr): 1685 (C=O) cm⁻¹.

3-pentylbenzo[*d*]thiazol-2(3H)-one (2c): Pale yellow oil, isolated yield 71% (46.9 mg); ¹H NMR (500 MHz, CDCl₃) δ : 7.42 (dd, *J* = 7.5 Hz, 1.0 Hz, 1H), 7.31 (td, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.15 (td, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 3.93 (t, *J* = 7.5 Hz, 2H), 1.76-1.71 (m, 2H), 1.38-1.36 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.79, 137.11, 126.16, 122.84, 122.77, 122.55, 110.51, 42.76, 28.83, 27.23, 22.28, 13.86; IR (KBr): 1679 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₂H₁₅NOS]H⁺: 222.0947; found 222.0947.

3-octylbenzo[*d*]thiazol-2(3H)-one (2d):⁶ Pale yellow oil, isolated yield 81% (64.0 mg); ¹H NMR (500 MHz, CDCl₃) δ : 7.41 (dd, J = 7.5 Hz, 1.0 Hz, 1H), 7.31 (td, J = 7.8 Hz, 1.0 Hz, 1H), 7.14 (td, J = 7.5 Hz, 1.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 3.93 (t, J = 7.5 Hz, 2H), 1.76-1.70 (m, 2H), 1.38-1.26 (m, 10H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.77, 137.12, 126.16, 122.84, 122.78, 122.56, 110.52, 42.80, 31.68, 29.16, 29.07, 27.54, 26.75, 22.54, 14.01; IR (KBr): 1679 (C=O) cm⁻¹.

S6

1.0 Hz, 1H), 7.30 (td, J = 7.8 Hz, 1.0 Hz, 1H), 7.19-7.13 (m, 2H), 4.13 (t, J = 5.8 Hz, 2H), 3.68 (t, J = 5.5 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 170.13, 137.48, 126.17, 122.98, 122.45, 122.36 111.18, 69.80, 58.98, 42.72; IR (KBr): 1679 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₀H₁₁NO₂S]H⁺: 210.0583; found 210.0581.

3-benzylbenzo[*d*]thiazol-2(3H)-one (2f):⁵ yellow solid, isolated yield 52% (37.7 mg); mp: 83.3-84.1 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.40 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.32-7.24 (m, 5H), 7.19 (td, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.11 (td, *J* = 7.5 Hz, 1.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 170.22, 136.88, 135.05, 128.81, 127.81, 127.04, 126.26, 123.17, 122.52 (2C), 111.19, 46.09; IR (KBr): 1665 (C=O) cm⁻¹.

S 3-(4-methylbenzyl)benzo[*d*]thiazol-2(3H)-one (2g): yellow solid, isolated yield 53% (40.7 mg); mp: 66.2-67.3 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.39 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.21-7.17 (m, 3H), 7.12-7.08 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 1H), 5.09 (s, 2H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 170.21, 137.55, 136.93, 132.04, 129.46, 127.08, 126.22, 123.10, 122.52, 122.47, 111.21, 45.90, 21.02; IR (KBr): 1662 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₅H₁₃NOS]H⁺: 256.0791; found 256.0791.

3-(4-chlorobenzyl)benzo[*d*]thiazol-2(3H)-one (2h):⁷ yellow solid, isolated yield 61% (50.3 mg); mp: 79.5-80.6 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.43 (dd, *J* = 7.5 Hz, 1.0 Hz, 1H), 7.30-7.27 (m, 2H), 7.24-7.20 (m, 3H), 7.14 (td, *J* =

S7

7.5 Hz, 1.0 Hz, 1H), 6.92 (dd, J = 8.0 Hz, 0.5 Hz, 1H), 5.10 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 170.24, 136.63, 133.75, 133.60, 129.04, 128.50, 126.36, 123.38, 122.68, 122.55, 111.01, 45.47; IR (KBr): 1669 (C=O) cm⁻¹.

3-(naphthalen-2-ylmethyl)benzo[*d*]thiazol-2(3H)-one (2i): yellow solid, isolated yield 54% (47.4 mg); mp: 108.9-110.1 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.79-7.75 (m, 3H), 7.70 (s, 1H), 7.45-7.43 (m, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.15 (td, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.08 (td, *J* = 7.5 Hz, 1.0 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 5.27 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 170.34, 136.89, 133.16, 132.81, 132.52, 128.84, 127.71, 127.64, 126.37, 126.28, 126.11, 125.94, 124.82, 123.21, 122.53 (2C), 111.26, 46.33; IR (KBr): 1685 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₈H₁₃NOS]H⁺: 292.0791; found 292.0792.

3-(furan-2-ylmethyl)benzo[*d*]thiazol-2(3H)-one (2j): yellow oil, isolated yield 58% (40.2 mg); ¹H NMR (500 MHz, CDCl₃) δ : 7.41 (dd, *J* = 7.5 Hz, 0.5 Hz, 1H), 7.34 (dd, *J* = 2.0 Hz, 0.5 Hz, 1H), 7.30 (td, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.24(t, *J* = 6.0 Hz, 1H), 7.15 (td, *J* = 7.5 Hz, 1.0 Hz, 1H), 6.36 (d, *J* = 3.5 Hz, 1H), 6.31 (dd, *J* = 3.5 Hz, 2.0 Hz, 1H), 5.10 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.82, 148.59, 142.62, 136.74, 126.30, 123.26, 122.51, 122.43, 111.07, 110.55, 109.06, 39.02; IR (KBr): 1682 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₂H₉NO₂S]H⁺: 232.0427; found 232.0427.

3-(1-phenylethyl)benzo[*d*]thiazol-2(3H)-one (2k): yellow oil, isolated yield 42% (32.1 mg); ¹H NMR (500 MHz, CDCl₃) δ: 7.40-7.38 (m, 1H),

7.34-7.33 (m, 4H), 7.29-7.27 (m, 1H), 7.06-7.04 (m, 2H), 6.73-6.71 (m, 1H), 6.14-6.09 (m, 1H), 1.90 (d, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 170.18, 138.58, 135.89, 128.74, 127.58, 126.46, 125.72, 122.65, 122.62, 122.51, 112.75, 51.81, 16.17; IR (KBr): 1665 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₅H₁₃NOS]H⁺: 256.0791; found 256.0793.

3-(3,4-dimethoxyphenethyl)benzo[d]thiazol-2(3H)-

one (21): yellow solid, isolated yield 71% (67.2 mg); mp: 83.9-85.0 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.41 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 7.27 (td, J = 8.0 Hz, 1.0 Hz, 1H), 7.13 (td, J = 7.8 Hz, 1.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.80-6.75 (m, 2H), 6.67 (d, J = 1.5 Hz, 1H), 4.13 (t, J = 7.5 Hz, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 2.96 (t, J = 7.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.64, 148.89, 147.80, 136.83, 130.03, 126.14, 122.89, 122.49, 122.46, 120.65, 111.90, 111.30, 110.41, 55.78, 55.72, 44.19, 33.24; IR (KBr): 1672 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₇H₁₇NO₃S]H⁺: 316.1002; found 316.1000.

3-phenethylbenzo[*d*]thiazol-2(3H)-one (2m):⁸ yellow solid, isolated yield 79% (60.5 mg); mp: 85.8-86.7 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.40 (d, *J* = 7.5 Hz, 1H), 7.30-7.25 (m, 3H), 7.23-7.21 (m, 3H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 4.13 (t, *J* = 8.0 Hz, 2H), 3.00 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.64, 137.52, 136.79, 128.70, 128.62 (2C), 126.76, 126.18, 122.91, 122.58, 110.36, 44.09, 33.73; IR (KBr): 1669 (C=O) cm⁻¹.

3-(4-fluorophenethyl)benzo[*d*]thiazol-2(3H)-one (2n):

yellow oil, isolated yield 80% (65.5 mg); ¹H NMR (500 MHz, CDCl₃) δ : 7.41 (dd, J = 7.5 Hz, 0.5 Hz, 1H), 7.28 (td, J = 7.8 Hz, 1.5 Hz, 1H), 7.17-7.12 (m, 3H), 6.96 (t, J = 9.0 Hz, 3H), 4.12 (t, J = 7.8 Hz, 2H), 2.99 (t, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.68, 161.76 (d, J = 243.5 Hz), 136.73, 133.22 (d, J = 2.9 Hz), 130.20 (d, J = 7.9 Hz), 126.22, 123.00, 122.65, 122.59, 115.46 (d, J = 21.0 Hz), 110.30, 44.03, 32.91; IR (KBr): 1675 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₅H₁₂FNOS]H⁺: 274.0696; found 274.0700.

3-(2-(thiophen-2-yl)ethyl)benzo[d]thiazol-2(3H)-one (20):

yellow solid, isolated yield 77% (60.3 mg); mp: 82.8-83.8 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.41 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.27 (td, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.15-7.12 (m, 2H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.90 (dd, *J* = 5.0 Hz, 3.5 Hz, 1H), 6.84 (d, *J* = 2.5 Hz, 1H), 4.17 (t, *J* = 7.5 Hz, 2H), 3.24 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.70, 139.35, 136.75, 127.09, 126.26, 125.76, 124.25, 123.01, 122.62, 122.56, 110.27, 44.12, 27.75; IR (KBr): 1672 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₁₃H₁₁NOS₂]H⁺: 262.0355; found 262.0355.

benzo[*d*]thiazol-2(3H)-one (2p):⁹ Pale yellow solid, isolated yield 75% (34.0 mg); mp: 134.5-135.3 °C; ¹H NMR (500 MHz, CDCl₃) δ : 10.44 (s, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ : 173.37, 135.50, 126.49, 123.88, 123.20, 122.42, 111.88; IR (KBr): 1665 (C=O) cm⁻¹.

3-phenylbenzo[*d*]thiazol-2(3H)-one (2q):⁵ yellow oil, isolated yield 24% (16.4 mg); ¹H NMR (500 MHz, CDCl₃) δ: 7.58-7.55 (m, 2H), 7.51-7.48 (m, 1H), 7.47-7.45 (m, 1H), 7.42-7.40 (m, 2H), 7.22-7.16 (m, 2H), 6.80-6.78 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ: 169.66, 138.23, 134.82, 129.98, 129.61, 129.18, 127.86, 126.27, 123.54, 122.52, 111.78; IR (KBr): 1695 (C=O) cm⁻¹.

F 6-fluoro-3-methylbenzo[*d*]thiazol-2(3H)-one (4b):¹⁰ yellow solid, isolated yield 78% (42.8 mg); mp: 91.9-92.9 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.18 (dd, *J* = 7.5 Hz, 2.5 Hz, 1H), 7.05 (td, *J* = 8.8 Hz, 2.5 Hz, 1H), 6.97 (dd, *J* = 9.0 Hz, 4.5 Hz, 1H), 3.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.41, 158.93 (d, *J* = 241.1 Hz), 133.92, 123.60 (d, *J* = 10.0 Hz), 113.45 (d, *J* = 23.8 Hz), 110.91 (d, *J* = 8.4 Hz), 109.84 (d, *J* = 26.8 Hz), 29.12; IR (KBr): 1679 (C=O) cm⁻¹.

Cl **6-chloro-3-methylbenzo**[*d*]thiazol-2(3H)-one (4c):¹¹ Pale yellow solid, isolated yield 83% (49.6 mg); mp: 107.7-108.6 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.39 (d, J = 2.0 Hz, 1H), 7.28 (dd, J = 8.5 Hz, 2.0 Hz, 1H), 6.95 (d, J = 9.0 Hz, 1H), 3.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.26, 136.17, 128.43, 126.46, 123.83, 122.20, 111.08, 29.07; IR (KBr): 1682 (C=O) cm⁻¹.

^{Cl} (J = 0) **5-chloro-3-methylbenzo**[*d*]thiazol-2(3H)-one (4d):¹¹ Pale yellow solid, isolated yield 77% (46.1 mg); mp: 104.2-104.9 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.32 (d, J = 8.0 Hz, 1H), 7.14 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.03 (d, J = 1.5 Hz, 1H), 3.43 (s, 3H); mp: 103.2-103.9 °C; ¹³C NMR (125 MHz, CDCl₃) δ : 169.84, 138.55, 132.33, 123.24, 123.19, 120.70, 110.77, 29.06; IR (KBr): 1685 (C=O) cm⁻¹.

Br **6-bromo-3-methylbenzo**[*d*]thiazol-2(3H)-one (4e):¹² Pale yellow solid, isolated yield 55% (40.3 mg); mp: 116.6-117.8 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.53 (d, *J* = 1.5 Hz, 1H), 7.43 (dd, *J* = 8.5 Hz, 1.5 Hz, 1H), 6.90 (d, *J* = 8.5 Hz, 1H), 3.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.22, 136.65, 129.30, 124.97, 124.28, 115.54, 111.52, 29.08; IR (KBr): 1679 (C=O) cm⁻¹.

3-methyl-6-(trifluoromethyl)benzo[*d*]thiazol-2(3H)-one (4f): yellow solid, isolated yield 72% (50.5 mg); mp: 51.6-52.7 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.69 (s, 1H), 7.59 (d, *J* = 8.5 Hz, 1H), 7.13 (d, *J* = 8.5 Hz, 1H), 3.49 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.62, 140.16, 125.55 (q, *J* = 32.8 Hz), 123.85 (q, *J* = 270.4 Hz), 123.66 (q, *J* = 3.8 Hz), 123.12, 119.73 (q, *J* = 3.6 Hz), 110.18, 29.20; IR (KBr): 1685 (C=O) cm⁻¹; HRMS (ESI, m/z) calcd for [C₉H₆F₃NOS]H⁺: 234.0195; found 234.0195.

H₃C **3,6-dimethylbenzo**[*d*]thiazol-2(3H)-one (4g):¹³ Pale yellow solid, isolated yield 75% (40.3 mg); mp: 68.5-70.0 °C; ¹H NMR (500 MHz, CDCl₃) δ : 7.21 (s, 1H), 7.11 (d, *J* = 8.5 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 3.41 (s, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 169.89, 135.41, 132.93, 127.02, 122.65, 122.34, 110.04, 28.86, 20.96; IR (KBr): 1669 (C=O) cm⁻¹.

Br **6-bromobenzo**[*d*]thiazol-2(3H)-one (4h):¹⁴ Pale yellow solid, isolated yield 53% (36.6 mg); mp: 229.8-230.8 °C; ¹H NMR (500 MHz, DMSO-d₆) δ : 11.98 (s, 1H), 7.81 (d, *J* = 2.0 Hz, 1H), 7.42 (dd, *J* = 8.5 Hz, 2.0 Hz, 1H), 7.04 (d, *J* = 1.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ : 170.23, 136.13, 129.69, 126.10, 125.51, 114.51, 113.66; IR (KBr): 1672 (C=O) cm⁻¹.

F₃**C S 6-(trifluoromethyl)benzo**[*d*]thiazol-2(3H)-one (4i):⁹ Pale yellow solid, isolated yield 73% (47.9 mg); mp: 130.9-131.8 °C; ¹H NMR (500 MHz, DMSO-d₆) δ : 12.28 (s, 1H), 8.01 (s, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.25 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ : 170.77, 140.13, 124.89, 124.80 (q, *J* = 270.1 Hz), 124.08 (q, *J* = 3.8 Hz), 123.67 (q, *J* = 32.0 Hz), 120.71 (q, *J* = 3.9 Hz), 112.21; IR (KBr): 1722(C=O) cm⁻¹.

NC **2-oxo-2,3-dihydrobenzo**[*d*]thiazole-6-carbonitrile (4j):¹⁵ Pale yellow solid, isolated yield 14% (7.4 mg); mp: above 230 °C; ¹H NMR (500 MHz, DMSO-d₆) δ : 12.41 (s, 1H), 8.13 (d, *J* = 1.5 Hz, 1H), 7.72 (dd, *J* = 8.5 Hz, 1.5 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ : 170.54, 140.73, 131.31, 127.33, 125.09, 119.31, 112.61, 105.23; IR (KBr): 1689 (C=O) cm⁻¹.

 H_3C **6-methylbenzo**[*d*]thiazol-2(3H)-one (4k):⁹ Pale yellow solid, isolated yield 70% (34.7 mg); mp: 166.3-167.4 °C; ¹H NMR (500 MHz, DMSO-d₆) δ : 11.74 (s, 1H), 7.32 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ : 170.46, 134.48, 132.32, 127.60, 123.77, 123.12, 111.72, 21.12; IR (KBr): 1655 (C=O) cm⁻¹.

6) References

- 1. J. P. Sadlghi, M. C. Harris and S. L. Buchwald, Tetrahedron Lett., 1998, 39, 5327.
- 2. Y. Chen, C.-H. Cho and R. C. Larock, Org. Lett., 2009, 11, 173.

- 3. M. Pal, N. K. Swamy, P. S. Hameed, S. Padakanti and K. R. Yeleswarapu, *Tetrahedron*, 2004, **60**, 3987.
- 4. A. Stock and E. Kuss, Ber. Dtsch. Chem. Ges. 1917, 50, 159.
- R. A. Bartsch, Y. M. Chae, S. Ham and D. M. Birney, J. Am. Chem. Soc., 2001, 123, 7479.
- N. Matuszak, B. Es Saadi, G. Labar, J. Marchand-Brynaert and D. M. Lambert, Bioorg. Med. Chem. Lett., 2011, 21, 7321.
- 7. H. D. Cossey, J. Judd and F. F. Stephens, J. Chem. Soc., 1965, 954.
- 8. The Upjohn Company, US5594144 A1, 1997.
- 9. J. Li, Y. Zhang, Y. Jiang and D. Ma, Tetrahedron Lett., 2012, 53, 2511.
- 10. G. Mazzone and G. Pappalardo, Farmaco. Edizione Scientifica., 1977, 32, 348.
- Y. Tanabe, T. Okabe, A. Kakimizu, N. Ohno and H. Yoshioka, *Bull. Chem. Soc. Jpn.*, 1983, 56, 1255.
- P. Carato, Z. Moussavi, S. Yous, J.-H. Poupaert, N. Lebegue and P. Berthelot, Synth. Commun., 2004, 34, 2601.
- 13. R. F. Hunter and E. R. Parken, J. Chem. Soc., 1935, 1755.
- 14. S. Murru, P. Mondal, R. Yella and B. K. Patel, Eur. J. Org. Chem., 2009, 31, 5406.
- Z. Hua, X. Huang, H. Bregman, N. Chakka, E. F. DiMauro, E. M. Doherty, J. Goldstein, H. Gunaydin, H. Huang, S. Mercede, J. Newcomb, V. F. Patel, S. M. Turci, J. Yan, C. Wilson and M. W. Martin, *Bioorg. Med. Chem. Lett.*, 2012, 22, 5392.

6) Scanned ¹H NMR and ¹³C NMR Spectra of All New Compounds

