Supporting Information

Divergent reactivities of *o*-halo anilides with CuO nanoparticle in water: A green synthesis of benzoxazoles and *o*-hydroxy anilides

Nilufa Khatun, Srimanta Guin, Saroj Kumar Rout and Bhisma K Patel

Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India Fax no. +91-3612690762; E-mail: <u>patel@iitg.ernet.in</u>

List of Contents

1.	Crystallographic description	S2-S3
2.	Spectral data	S4-S18
3.	Spectra (¹ H NMR and ¹³ C NMR)of compounds	S19-S55

Experimental:

General remarks

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. Reaction progress was monitored by TLC using Merck silica gel 60 F_{254} (0.25mm) with detection by UV or iodine. Chromatography was performed using Merck silica gel (60-120) mesh size with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. ¹H NMR (400 MHz and 600 MHz) and ¹³C NMR (100 MHz and 150 Hz) spectra were recorded on a Varian FT-400 MHz and Bruker FT-600 MHz instrument using TMS as an internal standard. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad, brs = broad singlet, brm= broad multiplet, coupling constant *J* (Hz). Elemental analyses were carried out on a Perkin–Elmer 2400 automatic carbon, hydrogen, nitrogen and sulfur analyser.

uncorrected. IR spectra were recorded in KBr or neat on a Nicolet Impact 410 spectrophotometer. Mass data were obtained with a WATERS MS system, Q-tof premier and data analyzed using Mass Lynx4.1.

Crystallographic Analysis: Crystal data were collected with Bruker Smart Apex-II CCD diffractometer using graphite by using graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å) at 298 K. Cell parameters were retrieved using SMART ¹USA, 1995 software and refined with SAINT ¹ for all observed reflections. Data reduction was performed with the SAINT software and corrected for Lorentzian and polarization effects. Absorption corrections were applied with the SADABS program.².The structures were solved by direct methods implemented in the SHELX-97 program³ and refined by full-matrix least-squares methods on F^2 . All non-hydrogen atom positions were located in difference Fourier maps and refined anisotropically. The hydrogen atoms were placed in their geometrically generated positions. The crystals were isolated in rectangular shape from ethyl acetate and hexane mixture at room temperature.

References

- 1 SMART, SAINT and XPREP, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin.
- 2 G. M. Sheldrick, SADABS: Empirical Absorption and Correction Software, University of Gottingen, Institut fur Anorganische Chemieder Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany, 1999–2003.
- 3 G. M. Sheldrick, SHELXS-97, University of Gottingen, Germany, 1997.

Figure 1. ORTEP views of N-(2-Hydroxyphenyl)benzamide (2a')

Crystallographic description of *N*-(2-Hydroxyphenyl)benzamide (2a'): $C_{13}H_{11}NO_2$, crystal dimension 0.28 x 0.26 x 0.24 mm, $M_r = 213.23$, Monoclinic, Space group P $2_1/c$, a = 10.9246(10) Å, b = 7.0228(6) Å, c = 14.1338(12) Å, $\alpha =$ 90.00, $\beta = 90.645(6)$, $\gamma = 90.00$, V = 1084.29(16) Å³, Z = 4, $\rho_{calcd} = 1.306$ mg/m³, $\mu =$ 0.089 mm^{-1} , F(000) = 448, reflection collected / unique = 2385 / 1350, refinement method = full-matrix least-squares on F^2 , final R indices $[I > 2\sigma(I)]$: $R_1 = 0.0789$, $wR_2 = 0.2155$, R indices (all data): $R_1 = 0.1433$, $wR_2 = 0.2512$, goodness of fit = 1.174. CCDC-919286 (for N-(2-hydroxyphenyl)benzamide) contains the supplementary crystallographic data for this paper. These data can be obtained free charge from The Cambridge Crystallographic of Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure 2 ORTEP views of 4-Bromo-6-methyl-2-phenylbenzo[d]oxazole (21aa)

Crystallographic description of 4-Bromo-6-methyl-2-phenylbenzo[d]oxazole (21aa): $C_{14}H_{10}BrNO$, crystal dimensions 0.28 x 0.26 x 0.24 mm, $M_r = 288.13$, Monoclinic, Space group P 2/₁, a = 10.3512(8) Å, b = 14.0265(11) Å, c = 12.8571(10) Å, $\alpha = 90.00$, $\beta = 105.177(5)$, $\gamma = 90.00$, V = 1801.6(2) Å³, Z = 6, $\rho_{calcd} = 1.593 \text{ mg/m}^3$, $\mu = 3.403 \text{ mm}^{-1}$, F(000) = 760, reflection collected / unique = 7274 / 3248 , refinement method = full-matrix least-squares on F^2 , final *R* indices [$I > 2\sigma$ (I)]: $R_1 = 0.0552$, $wR_2 = 0.1374$, *R* indices (all data): $R_1 = 0.1695$, $wR_2 = 0.1897$, goodness of fit = 0.890. CCDC - 919285 (for 4-Bromo-6-methyl-2-phenylbenzo[d]oxazole) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Spectal Data

N-(2-Hydroxyphenyl)acetamide (1a'): Brown solid; M.p. 199-201 °C (lit.⁴ 201 °C); ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 2.09 (s, 3H), 6.73-6.77 (m, 1H), 6.85 (d, 1H, *J* = 7.6 Hz), 6.91-6.95 (m, 1H), 7.66 (d, 1H, *J* = 7.6 Hz), 9.31 (brs, 1H), 9.76 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ (ppm) 18.7, 111.1, 114.1, 117.5, 119.8, 121.5, 143.0, 164.2; IR (KBr): 3403, 2925, 2617, 1658, 1595, 1542, 1455, 1380, 1282, 1240, 1106, 1037, 1016, 765, 660 cm⁻¹; HRMS (ESI): calcd. for (C₈H₉NO₂) (MH⁺) 152.0706; found 152.0693.

Mixture of *N*-(2-Hydroxy-4-methylphenyl)acetamide and *N-p*-Tolylacetamide (2a'+2a''): Off white solid; ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 2.01 (s, 3H), 2.06 (s, 3H), 2.18 (s, 3H), 2.23 (s, 3H), 6.56 (d, 2H, *J* = 8.4 Hz), 6.66 (s, 1H), 7.07 (d, 2H, *J* = 8.4 Hz), 7.45 (t, 2H, *J* = 8 Hz), 9.29 (s, 1H), 9.65 (s, 1H), 9.83 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ (ppm) 20.5, 20.6, 23.5, 23.96, 116.7, 119.1, 119.6, 122.5, 123.8, 129.1, 131.9, 134.2, 136.8, 147.9, 168.2, 169.1; IR (KBr): 3431, 3270, 3073, 2919, 1661, 1639, 1621, 1550, 1415, 1383, 1301, 1268, 1250, 1160, 1119, 1045, 1015, 973, 945, 860, 797 cm⁻¹.

Mixture of *N*-(4-Bromo-2-hydroxyphenyl)acetamide and *N*-(4-Bromophenyl)acetamide (3a'+3a''): Brown solid; ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 2.07 (s, 3H), 2.02 (s, 3H), 6.93 (d, 1H, J = 8.8 Hz), 7.00 (s, 1H), 7.46 (d, 2H, J = 7.6 Hz), 7.54 (d, 2H, J = 8.4 Hz), 7.73 (d, 1H, J = 8.8 Hz), 9.26 (s, 1H), 10.1 (s, 1H), 10.4 (s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ (ppm) 23.7, 24.0, 114.6,

115.6, 118.0, 120.9, 121.6, 123.7, 126.1, 131.5, 138.7, 149.0, 168.6, 169.1; IR (KBr): 3390, 2704, 1658, 1604, 1586, 1534, 1407, 1366, 1270, 1235, 1197, 1118, 1010, 966, 877, 848, 796 cm⁻¹.

N-(**3,4-Dimethylphenyl)acetamide** (**4a**''): Brown solid; M.p. 83–85°C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.11 (s, 3H), 2.18 (s, 6H), 7.01 (d, 1H, *J* = 8 Hz), 7.21 (d, 1H, *J* = 8 Hz), 7.26 (s, 1H), 8.06 (brs, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 19.3, 19.9, 24.4, 117.9, 121.8, 129.96, 132.7, 135.9, 137.2, 169.1; IR (KBr): 2922, 2858, 1600, 1592, 1539, 1505, 1448, 1408, 1371, 1317, 1263, 1208, 1164, 1120, 1022, 875 cm⁻¹; elemental analysis calcd (%) for C₁₀H₁₃NO (163.2163) C 73.59, H 8.03, N 8.58; found C 73.67, H 7.99, N 8.51.

N-(2-Hydroxyphenyl)benzamide (2a'): Brown solid; M.p. 145-148 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 6.84 (t, 1H, J = 7.6 Hz), 6.93 (d, 1H, J = 8 Hz), 7.02-7.06 (m, 1H), 7.53-7.59 (m, 3H), 7.68 (d, 1H, J = 8 Hz), 7.97 (d, 2H, J = 6.8 Hz), 9.53 (s, 1H), 9.78 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ (ppm) 116.0, 119.1, 124.1, 125.7, 127.5, 127.6, 128.5, 131.7, 134.4, 149.3, 165.8; IR (KBr): 3048, 3026, 2923, 2850, 1645, 1575, 1542, 1452, 1367, 1286, 1238, 1094, 748, 703 cm⁻¹; HRMS (ESI): calcd. for (C₁₃H₁₁NO₂) (MH⁺) 214.0863; found 214.0848.

4-Chloro-*N***-(2-hydroxyphenyl)benzamide** (**3a**'): Brown solid; M.p. 164-166.5 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 6.83 (t, 1H, *J* = 7.6 Hz), 6.92 (d, 1H, *J* = 8 Hz), 7.05 (t, 1H, *J* = 7.6 Hz), 7.60 (d, 3H, *J* = 7.6 Hz), 7.99 (d, 2H, *J* = 7.6 Hz), 9.62 (s, 1H), 9.74 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ (ppm) 115.9, 118.9, 124.7, 125.5, 126.0, 128.5, 129.5, 133.2, 136.4, 149.7, 164.3; IR (KBr): 3211, 2923, 2853, 1732, 1633, 1596, 1528, 1484, 1455, 1329, 1292, 1096, 913, 746 cm⁻¹; HRMS (ESI): calcd. for (C₁₃H₁₀CINO₂) (MH⁺) 248.0473; found 248.0461.

N-(2-Hydroxyphenyl)-4-methoxybenzamide (4a'): Brown solid; M.p. 170-172 ^oC; ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 3.84 (s, 3H), 6.83 (t, 1H, *J* = 7.2 Hz), 6.91 (d, 1H, *J* = 8 Hz), 6.99-7.07 (m, 3H), 7.66 (d, 1H, *J* = 8 Hz), 7.96 (d, 2H, *J* = 8.8 Hz), 9.43 (s, 1H), 9.74 (brs, 1H); ¹³NMR (DMSO-*d*₆, 100 MHz): δ (ppm) 55.5, 113.8, 116.2, 119.1, 123.9, 125.6, 126.2, 126.4, 129.5, 149.2, 162.0, 164.9; IR (KBr): 3262, 2959, 2389, 1628, 1604, 1508, 1486, 1327, 1291, 1262, 1235, 1174, 1027, 910, 843, 757 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₃NO₃ (243.2574) C 69.12, H 5.39, N 5.76; found C 69.19, H 5.32, N 5.71.

2-Hydroxyaniline: M.p. 216-218 °C, ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 4.36 (brs, 2H), 6.27 (t, 1H, J = 7.6 Hz), 6.39-6.47 (m, 2H), 6.52 (1H, d, J = 7.6 Hz), 8.81 (brs, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ (ppm) 114.4, 114.5, 116.4, 119.5,

136.5, 143.9; IR (KBr): 3376, 3305, 1605, 1511, 1459, 1402, 1267, 1216, 1075, 1031, 896, 846, 741 cm⁻¹; elemental analysis calcd (%) for C₆H₇NO (109.1256): C 66.04, H 6.47, N 12.84; found C 66.09, H 6.43, N 12.73.

2-Phenylbenzo[*d*]**oxazole** (**2aa**): White solid; M.p. 101-103 °C (lit.⁵ 103-104 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.33-7.35 (m, 2H), 7.51-7.52 (m, 3H), 7.56-7.58 (m, 1H), 7.75-7.78 (m, 1H), 8.23-8.26 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 110.8, 120.2, 124.8, 125.3, 127.3, 127.8, 129.1, 131.7, 142.3, 150.9, 163.2; IR (KBr): 2927, 2851, 1635, 1618, 1553, 1448, 1242, 1053, 924, 806, 745, 704 cm⁻¹; elemental analysis calcd (%) for C₁₃H₉NO (195.2163): C 79.98, H 7.17, N 4.65; found C 80.05, H 4.62, N 7.09.

2-(4-Chlorophenyl)benzo[*d*]**oxazole** (**3aa**): White solid; M.p. 149-151 °C (lit.⁵ 153-154 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.32-7.36 (m, 2H), 7.48 (d, 2H, *J* = 8.8 Hz), 7.55-7.57 (m, 1H), 7.73-7.76 (m, 1H), 8.17 (d, 2H, *J* = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 110.8, 120.2, 124.9, 125.5, 125.8, 128.9, 129.4, 137.9, 142.1, 150.9, 162.2; IR (KBr): 3054, 1616, 1481, 1452, 1404, 1243, 1091, 1055, 1009, 924, 832, 738 cm⁻¹; HRMS (ESI): calcd. for (C₁₃H₈ClNO) (MH⁺) 230.0367; found 230.0355.

2-(4-Methoxyphenyl)benzo[*d*]**oxazole** (**4aa**): White solid; M.p. 103-105 °C (lit.⁵ 103-105 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 3.86 (s, 3H), 7.01 (d, 2H, *J* = 9.2 Hz), 7.79-7.33 (m, 2H), 7.53-7.55 (m, 1H), 7.22-7.25 (m, 1H), 8.19 (d, 2H, *J* = 9.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 55.4, 110.4, 114.4, 119.67, 119.71, 124.5, 124.6, 129.4, 142.4, 150.7, 162.4, 163.2; IR (KBr): 2923, 1617, 1604, 1503, 1454, 1253, 1242, 1169, 1105, 1059, 1017, 919, 831, 740, 729 cm⁻¹; HRMS (ESI): calcd. for (C₁₄H₁₁NO₂) (MH⁺) 226.0863; found 226.0877.

2-(4-Ethylphenyl)benzo[*d*]**oxazole** (**5aa**): White solid; M.p. 83-85 °C (lit.⁶ 84-86 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.18 (t, 3H, *J* = 8 Hz), 2.62 (q, 2H, *J* = 7.6 Hz), 7.22-7.25 (m, 4H), 7.44-7.47 (m, 1H), 7.65-7.67 (m, 1H), 8.07 (d, 2H, *J* = 8 Hz); ¹³C NMR (CDCl₃, 100MHz): δ (ppm) 15.3, 29.0, 110.6, 119.9, 124.6, 124.7, 124.9, 127.8, 128.5, 142.3, 148.3, 150.8, 163.4; IR (KBr): 2954, 2928, 2862, 1618, 1552, 1496, 1453, 1414, 1286, 1244, 1168, 1053, 1009, 922 cm⁻¹; elemental analysis calcd (%) for C₁₅H₁₃NO (223.2693): C 80.69, H 5.87, N 6.27; found C 80.77, H 5.93, N 6.20.

2-p-Tolylbenzo[d]oxazole (**6aa**): White Solid; M.p. 111-113 °C (lit.⁷ 110-112 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.38 (s, 3H), 7.27-7.31 (m, 4H), 7.51-7.53 (m, 1H), 7.73-7.75 (m, 1H), 8.11 (d, 2H, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.7, 110.6, 119.9, 124.5, 124.6, 124.9, 127.7, 129.7, 142.1, 142.3, 105.8, 163.4; IR (KBr): 3054, 2917, 1621, 1552, 1500, 1450, 1242, 1196, 1172, 1054, 1015, 820, 745, 724 cm⁻¹; HRMS (ESI): calcd. for (C₁₄H₁₁NO) (MH⁺) 210.0935; found 210.0947.

SMe

2-(4-(Methylthio)phenyl)benzo[*d*]**oxazole** (**7aa**): Yellowish-white solid; M.p. 103-106 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.53 (s, 3H), 7.32 (d, 4H, *J* = 6.8 Hz), 7.53-7.56 (m, 1H), 7.72-7.74 (m, 1H), 8.13 (d, 2H, *J* = 8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 15.1, 110.6, 119.9, 123.4, 124.7, 125.1, 125.8, 127.9, 142.3, 143.8, 150.8, 162.9; IR (KBr): 2916, 1923, 1614, 1594, 1484, 1453, 1404, 1242, 1177, 1094, 1051, 1007, 941, 742 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₁NOS (241.3088): C 69.68, H 4.59, N 5.80, S 13.29; found C 69.77, H 4.51, N 5.72, S 13.40.

2-(4-(Trifluoromethyl)phenyl)benzo[*d*]**oxazole** (**8aa**): White solid; M.p. 148-150 °C (lit.⁸ 146-147 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.36-7.39 (m, 2H), 7.58-7.60 (m, 1H), 7.77 (d, 3H, *J* = 8.4 Hz), 8.35 (d, 2H, *J* = 8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 110.9, 120.6, 122.6, 125.1, 125.9, 126.02, 126.05, 127.9, 130.6, 142.1, 151.0, 161.6; IR (KBr): 2958, 1933, 1608, 1558, 1453, 1415, 1321, 1244, 1167, 1116, 1069, 846, 815, 743 cm⁻¹; elemental analysis calcd (%) for C₁₄H₈F₃NO (263.2143): C 63.88, H 3.06, N 5.32; found C 63.97, H 3.11, N 5.24.

2-(4-Fluorophenyl)benzo[*d*]**oxazole** (**9aa**): White solid; M.p. 106-108 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.11-7.16 (m, 2H), 7.27-7.29 (m, 2H), 7.49-7.51 (m, 1H), 7.68-7.69 (m, 1H), 8.16-8.20 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm)

110.7, 116.3 (d, 1C, J = 22.1 Hz), 120.1, 123.6, 125.0 (d, 1C, J = 47.3 Hz), 129.9 (d, 1C, J = 9.2 Hz), 142.2, 150.9, 162.3, 163.7, 162.2; IR (KBr): 3054, 2923, 1895, 1600, 1498, 1472, 1451, 1412, 1230, 1152, 1053, 834, 761 cm⁻¹; elemental analysis calcd (%) for C₁₃H₈FNO (213.2068): C 73.23, H 3.78, N 6.57; found C 73.29, H 3.72, N 6.51.

5-Methyl-2-phenylbenzo[*d*]**oxazole** (**10aa**): White solid; M.p. 103-105 °C (lit.⁹ 103-105 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.45 (s, 3H), 7.14 (d, 1H, *J* = 8.4 Hz), 7.43 (d, 1H, *J* = 8 Hz), 7.49-7.51 (m, 3H), 7.54 (s, 1H), 8.21-8.24 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.6, 109.9, 119.9, 126.3, 127.4, 127.6, 128.9, 131.4, 134.4, 142.4, 149.1, 163.1; IR (KBr): 3032, 2920, 2857, 1551, 1474, 1445, 1334, 1263, 1198, 1053, 1021, 925, 825, 795, 775, 700 cm⁻¹; HRMS (ESI): calcd. for (C₁₄H₁₁NO) (MH⁺) 210.0913; found 210.0925.

2-(4-Chlorophenyl)-5-methylbenzo[*d*]**oxazole** (**11aa**): White solid; M.p. 148-150 °C (lit.⁹ 148-150 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.46 (s, 3H), 7.14 (d, 1H, *J* = 7.6 Hz), 7.42 (d, 1H, *J* = 8.4 Hz), 7.46 (d, 2H, *J* = 8.4 Hz), 7.52 (s, 1H), 8.14 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 400 MHz): δ (ppm) 21.7, 110.1, 120.1, 125.9, 126.6, 128.9, 129.3, 134.7, 137.7, 142.4, 149.1, 162.3; IR (KBr): 2917, 2857, 1596, 1552, 1476, 1456, 1401, 1260, 1201, 1089, 1050, 1006, 825, 796 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₀CINO (MH⁺) 244.0524; found 244.0524.

Me

5-Methyl-2-p-tolylbenzo[*d*]**oxazole** (**12aa**): White Solid; M.p. 137-139 °C (lit.⁹ 138-141 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.41 (s, 3H), 2.46 (s, 3H), 7.12 (d, 1H, *J* = 8 Hz), 7.30 (d, 2H, *J* = 8 Hz), 7.41 (d, 1H, *J* = 8.4 Hz), 7.52 (s, 1H), 8.11 (d, 2H, *J* = 8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.7, 21.8, 109.9, 119.9, 124.7, 126.1, 127.6, 129.7, 134.4, 141.9, 142.5, 149.0, 163.5; IR (KBr): 2917, 2857, 1610, 1577, 1555, 1498, 1473, 1426, 1330, 1261, 1179, 1054, 1012, 924, 825, 796 cm⁻¹; HRMS (ESI): calcd. for C₁₅H₁₃NO (MH⁺) 224.107; found 224.1067.

5-Methyl-2-(4-nitrophenyl)benzo[*d*]**oxazole** (**13aa**): Yellow solid; M.p. 204-206 $^{\circ}$ C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm): 2.51 (s, 3H), 7.23-7.26 (m, 1H), 7.49 (d, 1H, *J* = 8 Hz), 7.59 (s, 1H), 8.35-8.42 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.7, 110.4, 120.6, 124.3, 127.7, 128.4, 133.1, 135.4, 142.3, 149.4, 160.8; IR (KBr): 2923, 1599, 1555, 1520, 1481, 1342, 1196, 1105, 1060, 853, 798, 707 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₀N₂O₃ (MH⁺) 255.0764; found 255.0760.

5-Methyl-2-(4-(methylthio)phenyl)benzo[*d*]oxazole (14aa): Yellowish solid; M.p 116-118 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.46 (s, 3H), 2.52 (s, 3H), 7.11-7.13 (m, 1H), 7.32 (d, 2H, *J* = 8.8 Hz), 7.41 (d, 1H, *J* = 8.4 Hz), 7.51 (s, 1H), 8.11 (d, 2H, *J* = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 15.1, 21.7, 109.9, 119.9, 123.7, 125.8, 126.2, 127.9, 134.5, 142.5, 143.6, 149.0, 163.1; IR (KBr): 2923, 1596, 1541, 1481, 1451, 1404, 1289, 1259, 1179, 1116, 1094, 1050, 820, 790, 728 cm⁻¹;

elemental analysis calcd (%) for C₁₅H₁₃NOS (255.3353): C 70.56, H 5.13, N 5.49, S 12.56; found C 70.65, H 5.21, N 5.41, S 12.63.

2-(4-Chlorophenyl)-6-methoxybenzo[*d*]**oxazole** (**15aa**): White solid; M.p. 134-136 ^oC; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 3.86 (s, 3H), 6.94 (dd, 1H, J_1 = 2.4 Hz, J_2 = 8.8 Hz), 7.077-7.083 (m, 1H), 7.46 (d, 2H, J = 8.4 Hz), 7.61 (d, 1H, J = 8.8 Hz), 8.11 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 56.1, 95.5, 113.1, 120.2, 125.9, 128.5, 129.3, 135.9, 137.3, 151.8, 158.6, 161.3; IR (KBr): 2934, 2829, 1618, 1484, 1317, 1292, 1220, 1146, 1113, 1089, 1050, 1020, 815, 762 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₀ClNO₂ (259.687): C 64.75, H 3.88, N 5.39; found C 64.81, H 3.94, N 5.31.

6-Methoxy-2-phenylbenzo[*d*]**oxazole** (**16aa**): Off-white solid; M. p 63-66 °C (lit.¹⁰ 65-66 °C); ¹H NMR (CDCl₃, 400 MHz,): δ (ppm) 3.86 (s, 3H), 6.94 (dd, 1H, $J_I = 2.4$ Hz, $J_2 = 8.8$ Hz), 7.086-7.092 (m, 1H), 7.48-7.49 (m, 3H), 7.62 (d, 1H, J = 8.8 Hz), 8.17-8.19 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 56.96, 95.5, 112.9, 120.0, 127.3, 127.4, 128.9, 131.1, 135.9, 151.7, 158.4, 162.3; IR (KBr): 2934, 2921, 1620, 1488, 1448, 1347, 1273, 1215, 1176, 1144, 1127, 1053, 1023, 838, 814 cm⁻¹; HRMS (ESI): calcd. for (C₁₄H₁₁NO₂) (MH⁺) 226.0863; found 226.0874.

2-(4-Fluorophenyl)-6-methoxybenzo[*d*]**oxazole** (**17aa**): White Solid; M.p. 105-107 ^oC; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 3.89 (s, 3H), 6.96 (dd, 1H, $J_I = 2.4$ Hz, $J_2 = 8.4$ Hz), 7.105-7.111 (m, 1H), 7.19 (t, 2H, J = 8.8 Hz), 7.63 (d, 1H, J = 8.8 Hz), 8.18-8.22 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 56.1, 95.6, 112.9, 116.2 (d, 1C, J = 22.1 Hz), 120.1, 123.8, 129.5 (d, 1C, J = 9.2 Hz), 135.9, 151.8, 158.4, 161.5, 164.7 (d, 1C, J = 51 Hz); IR (KBr): 2941, 2835, 1620, 1599, 1496, 1465, 1349, 1278, 1221, 1147, 1132, 1051, 831, 803 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₀FNO₂ (243.2327): C 69.13, H 4.14, N 5.76; found C 69.22, H 4.18, N 5.70.

6-Methoxy-2-p-tolylbenzo[*d*]**oxazole** (**18aa**): White solid; M.p. 94-96 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.39 (s, 3H), 3.85 (s, 3H), 6.92 (dd, 1H, $J_I = 2.8$ Hz, $J_2 = 8.8$ Hz), 7.067-7.072 (m, 1H), 7.28 (d, 2H, J = 8 Hz), 7.33 (1H, d, J = 8.8 Hz), 8.06 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.6, 55.9, 95.5, 112.6, 119.8, 124.6, 127.2, 129.6, 135.9, 141.5, 151.6, 158.2, 162.5; IR (KBr): 3001, 2928, 1862, 1626, 1486, 1462, 1347, 1272, 1212, 1178, 1143, 1126, 1056, 1019, 826, 801, 724 cm⁻¹; elemental analysis calcd (%) for C₁₅H₁₃NO₂: C 75.30, H 5.48, N 5.85; found C 75.38, H 5.41, N 5.79.

6-Methoxy-2-(4-(methylthio)phenyl)benzo[*d*]**oxazole** (**19aa**): Yellowish solid; M.p. 128–130 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.52 (s, 3H), 3.86 (s, 3H), 6.93 (dd, 1H, $J_1 = 2.0$ Hz, $J_2 = 8.4$ Hz), 7.075-7.08 (m, 1H), 7.31 (d, 2H, J = 8.8 Hz), 7.59 (d, 1H, J = 8.8 Hz), 8.07 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 15.1, 56.0, 95.5, 112.8, 119.8, 123.7, 125.8, 127.5, 136.0, 143.1, 151.6, 158.2, 162.1; IR (KBr): 2959, 2923, 2830, 1617, 1595, 1571, 1429, 1404, 1338, 1325, 1297, 1266, 1190, 1145, 1095, 1044, 1028, 1008, 983, 959, 841 cm⁻¹; HRMS (ESI): calcd. for (MH⁺) 272.074; found 272.0738.

4-Bromo-2-(4-chlorophenyl)-6-methylbenzo[*d*]**oxazole** (**20aa**): White solid; M.p. 184–186 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.49 (s, 3H), 7.32-7.33 (m, 1H), 7.37-7.38 (m, 1H), 7.49 (d, 2H, J = 9.2 Hz), 8.21 (d, 2H, J = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.7, 110.2, 112.2, 125.3, 129.2, 129.3, 137.2, 138.1, 139.5, 151.1, 162.1; IR (KBr): 2917, 2819, 1612, 1588, 1484, 1407, 1331, 1251, 1198, 1088, 1053, 1011, 976, 926, 871, 838, 818 cm⁻¹; HRMS (ESI): calcd. for (C₁₄H₉BrCINO) (MH⁺) 321.9629; found 321.9640.

4-Bromo-6-methyl-2-phenylbenzo[*d*]**oxazole** (**21aa**): Yellowish-white solid; M.p. 135–137 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.48 (s, 3H), 7.32 (s, 1H), 7.36 (s, 1H), 7.49-7.54 (m, 3H), 8.27 (dd, 2H, $J_1 = 1.6$ Hz, $J_2 = 8.0$ Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.6, 110.1, 112.0, 126.8, 127.9, 128.89, 129.94, 131.8, 136.8, 139.6, 151.0, 163.1; IR (KBr): 3054, 2915, 2893, 1611, 1550, 1473, 1447, 1399, 1333, 1287, 1198, 1255, 1198, 1055, 1022, 976, 928, 866, 846 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₀BrNO (288.1389): C 58.36, H 3.50, N 4.86; found C 58.42, H 3.55, N 4.81.

1-(2-(4-Chlorophenyl)benzo[*d*]**oxazol-6-yl)ethanone** (**22aa**): White solid; M.p. 185–187 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.67 (s, 3H), 7.50 (d, 2H, *J* = 8.4 Hz), 7.78 (d, 1H, *J* = 8.4 Hz), 7.99 (dd, 1H, *J*₁ = 1.6 Hz, *J*₂ = 8.4 Hz), 8.18 (d, 3H, *J* = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 26.9, 110.9, 119.8, 125.1, 125.7, 129.3, 129.5, 134.6, 138.7, 146.0, 150.8, 164.9, 169.9; IR (KBr): 3065, 1674, 1613, 1595, 1548, 1482, 1425, 1405, 1347, 1282, 1257, 1222, 1095, 1056, 826, 728 cm⁻¹; elemental analysis calcd (%) for C₁₅H₁₀ClNO₂ (271.6977): C 66.31, H 3.71, N 5.16; found C 66.38, H 3.78, N 5.10.

6-Chloro-2-(4-chlorophenyl)benzo[*d*]**oxazole** (**23aa**): White solid; M.p. 148–150 ^oC (lit.¹¹ 148-150 ^oC); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.32 (dd, 1H, $J_I = 2.0$ Hz, $J_2 = 8.4$ Hz), 7.48 (d, 2H, J = 8.8 Hz), 7.56 (s, 1H), 7.64 (d, 1H, J = 8.0 Hz), 8.13 (s, 2H, J = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 111.4, 120.7, 125.3, 125.6, 129.0, 129.5, 131.1, 138.3, 140.9, 151.0, 162.8; IR (KBr): 3083, 1982, 1615, 1591, 1548, 1482, 1461, 1425, 1401, 1326, 1259, 1239, 1124, 1094, 1009, 918, 854, 841 cm⁻¹; HRMS (ESI): calcd. for (C₁₃H₇Cl₂NO) (MH⁺) 263.9977; found 263.9989.

6-Bromo-2-(4-chlorophenyl)benzo[*d*]**oxazole** (**24aa**): White solid; M.p. 157–160 $^{\circ}$ C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.49-7.47 (m, 3H), 7.60 (d, 1H, *J* = 8.4 Hz), 7.22 (s, 1H), 8.14 (d, 2H, *J* = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 114.3, 118.4, 121.2, 125.3, 128.4, 129.1, 129.5, 138.3, 141.4, 151.4, 162.7; IR (KBr): 3082, 2928, 1925, 1614, 1547, 1478, 1459, 1399, 1325, 1258, 1084, 1051, 1009, 906, 812, 728 cm⁻¹; HRMS (ESI): calcd. for (C₁₃H₇BrClNO) (MH⁺) 307.9472; found 307.9487.

2-(4-Chlorophenyl)-6-(trifluoromethyl)benzo[*d*]**oxazole** (**25aa**): White solid; M.p. 114–116 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.51 (d, 2H, *J* = 8.4 Hz), 7.62 (d, 1H, *J* = 8.4 Hz), 7.83 (d, 2H, *J* = 8.8 Hz), 8.18 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 108.6, 120.6, 122.2, 125.0, 129.3, 129.6, 138.8, 144.9, 150.3, 164.5; IR (KBr): 3092, 1912, 1616, 1597, 1552, 1483, 1434, 1333, 1305, 1263, 1166, 1119, 1047, 927, 828 cm⁻¹; HRMS (ESI): calcd. for (C₁₄H₇F₃ClNO) (MH⁺) 298.0241; found 298.0251.

6-Bromo-2-p-tolylbenzo[d]oxazole (**26aa**): White solid; M.p. 127–129 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.42 (s, 3H), 7.30 (d, 2H, J = 8.0 Hz)7.44 (dd, 1H, $J_1 = 2.0$ Hz, $J_2 = 8.8$ Hz), 7.58 (d, 1H, J = 8.0 Hz), 7.71 (s, 1H), 8.09 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 21.9, 114.2, 117.8, 120.9, 124.1, 127.8, 128.1, 129.9, 141.6, 142.6, 151.3, 163.9; IR (KBr): 3027, 2917, 1613, 1497, 1456, 1437, 1325, 1255, 1182, 1118, 1050, 907, 830 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₀BrNO (288.1389): C 58.36, H 3.50, N 4.86; found C 58.45, H 3.44, N 4.81.

6-Chloro-2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (27aa): White solid; M.p. 120–123 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.34 (dd, 1H, $J_1 = 2.0$ Hz, $J_2 =$

8.4 Hz), 7.59 (s, 1H), 7.67 (d, 1H, J = 8.8 Hz), 7.76 (d, 2H, J = 8.4 Hz), 8.31 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 111.6, 121.0, 125.9, 126.1, 128.0, 130.1, 131.7, 140.8, 151.1, 162.2; IR (KBr): 2958, 1614, 1558, 1500, 1461, 1426, 1409, 1323, 1159, 1108, 1067, 922, 817 cm⁻¹; HRMS (ESI): calcd. for (C₁₄H₇F₃ClNO) (MH⁺) 298.0241; found 298.0255.

6-Bromo-2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (**28aa**): White solid; M.p. 106–108 °C; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.49 (dd, 1H, J_1 = 1.6 Hz, J_2 = 8.4 Hz), 7.64 (d, 1H, J = 8.8 Hz), 7.77 (d, 3H, J = 8.0 Hz), 8.33 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 114.5, 118.9, 121.5, 126.2, 127.8, 128.1, 128.6, 130.1, 141.3, 151.4, 162.1; IR (KBr): 3090, 2922, 1899, 1651, 1606, 1556, 1523, 1504, 1459, 1414, 1379, 1320, 1259, 1171, 1124, 1068, 1052, 1013, 966, 907, 847, 819 cm⁻¹; elemental analysis calcd (%) for C₁₄H₇BrF₃NO (342.1104): C 49.15, H 2.06, N 4.09; found C 49.23, H 2.11, N 4.01.

Mixture of *N*-(**2-Hydroxyphenyl**)**acetamide** (**1a**') **and N-phenylacetamide** (**1a**''): Brown solid; ¹H NMR (DMSO-*d*₆, 600 MHz): δ (ppm) 2.09 (s, 3H), 2.15 (s, 3H), 6.81 (t, 1H, *J* = 7.8 Hz), 6.91 (d, 1H, *J* = 7.8 Hz), 6.99 (t, 1H, *J* = 7.2 Hz), 7.07 (t, 1H, *J* = 7.8 Hz), 7.34 (t, 2H, *J* = 7.8 Hz), 7.62 (d, 2H, *J* = 7.8 Hz), 7.72 (d, 1H, *J* = 7.8 Hz), 9.35 (s, 1H), 9.78 (s, 1H), 9.97 (s, 1H); ¹³C NMR (DMSO-*d*₆, 150 MHz): δ (ppm) 23.9, 24.3, 116.4, 119.6, 119.8, 123.3, 123.9, 125.6, 126.5, 129.2, 139.4, 148.5, 169.5, 170.1; IR (KBr): 3481, 3403, 3295, 2966, 1661, 1596, 1556, 1500, 1453, 1368, 1322, 1284, 1263, 1106, 1038, 1014, 966, 844 cm⁻¹.

N-p-Tolylacetamide (2a''): Brown solid, M.p. 134–137°C; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 2.14 (s, 3H), 2.30 (s, 3H), 7.098-7.108 (m, 2H), 7.359-7.369 (m, 2H), 7.42 (brs, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 21.0, 24.6, 120.3, 129.6, 134.2, 135.5, 168.7; IR (KBr): 2920, 2850, 1662, 1602, 1551, 1511, 1445, 1378, 1365, 1322, 1264, 1040, 819, 752 cm⁻¹; elemental analysis calcd (%) for C₉H₁₁NO (149.1897) C 72.46, H 7.43, N 9.39; found C 72.39, H 7.45, N 9.31.

References

- 4. L. Chas Raiford, J. Am. Chem. Soc., 1919, 41, 2068.
- 5. M. M. Guru, M. A. Ali and T. Punniyamurthy, Org. Lett., 2011, 13, 1194.
- 6. S. Ueda and H. Nagasawa, Angew. Chem. Int. Ed., 2008, 47, 6411.
- M. Kidwai, V. Bansal, A. Saxena, S. Aery and S. Mozumdar, *Tetrahedron Lett.*, 2006, 47, 8049.
- 8. D. Subhas Bose and M. Idrees, Synthesis, 2010, 3, 398.
- 9. R. H. Shoar, M. Heidary, M. Farzaneh and R. Malakouti, *Synthetic Commun.*, 2009, 39, 1742.
- 10. M. I. El-Sheikh, A. Marks and E. R. Biehl, J. Org. Chem., 1981, 46, 3256.
- Y. Leng, F. Yang, W. Zhu, Y. Wu and X. Li, Org. Biomol. Chem., 2011, 9, 5288.

SPECTRA

N-(2-Hydroxyphenyl)acetamide (1a'): ¹³C NMR (DMSO-*d*₆, 100 MHz)

Mixture of N-(2-Hydroxy-4-methylphenyl)acetamide and N-p-Tolylacetamide (2a'+2a''): ¹H NMR (DMSO-d₆, 400 MHz)

Mixture of N-(2-Hydroxy-4-methylphenyl)acetamide and N-p-Tolylacetamide (2a'+2a''): 13 C NMR (DMSO-d₆, 100 MHz)

Mixture of *N*-(4-Bromo-2-hydroxyphenyl)acetamide and *N*-(4-Bromophenyl)acetamide (3a'+3a''): ¹H NMR (DMSO-*d*₆, 400 MHz)

Mixture of *N*-(4-Bromo-2-hydroxyphenyl)acetamide and *N*-(4-Bromophenyl)acetamide (3a'+3a''): ¹³C NMR (DMSO-*d*₆, 100 MHz)

N-(3,4-Dimethylphenyl)acetamide (4a''): ¹H NMR (CDCl₃, 400 MHz)

N-(2-Hydroxyphenyl)benzamide (2a'): ¹H NMR (DMSO-*d*₆, 400 MHz)

4-Chloro-N-(2-hydroxyphenyl)benzamide (3a'): ¹H NMR (DMSO-d₆, 400 MHz)

4-Chloro-N-(2-hydroxyphenyl)benzamide (3a'): ¹³C NMR (DMSO-*d*₆, 100 MHz)

N-(2-Hydroxyphenyl)-4-methoxybenzamide (4a'): ¹³C NMR (DMSO-*d*₆, 100 MHz)

2-Hydroxyaniline: ¹H NMR (DMSO-d₆, 400 MHz)

2-Hydroxyaniline: ¹³C NMR (DMSO-*d*₆, 100 MHz)

2-Phenylbenzo[d]oxazole (2aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-Chlorophenyl)benzo[d]oxazole (3aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-Methoxyphenyl)benzo[d]oxazole (4aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-Methoxyphenyl)benzo[d]oxazole (4aa): ¹³C NMR (CDCl₃, 100 MHz)

2-(4-Ethylphenyl)benzo[d]oxazole (5aa): ¹H NMR (CDCl₃, 400 MHz)

2-p-Tolylbenzo[d]oxazole (6aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-(Methylthio)phenyl)benzo[d]oxazole (7aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-(Methylthio)phenyl)benzo[d]oxazole (7aa): ¹³C NMR (CDCl₃, 100 MHz)

2-(4-(Trifluoromethyl)phenyl)benzo[*d*]oxazole (8aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-(Trifluoromethyl)phenyl)benzo[*d*]oxazole (8aa): ¹³C NMR (CDCl₃, 100 MHz)

2-(4-Fluorophenyl)benzo[d]oxazole (9aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-Fluorophenyl)benzo[d]oxazole (9aa): ¹³C NMR (CDCl₃, 100 MHz)

5-Methyl-2-phenylbenzo[*d*]oxazole (10aa): ¹H NMR (CDCl₃, 400 MHz)

5-Methyl-2-phenylbenzo[d]oxazole (10aa): ¹³C NMR (CDCl₃, 100 MHz)

2-(4-Chlorophenyl)-5-methylbenzo[*d*]oxazole (11aa): ¹³C NMR (CDCl₃, 100 MHz)

5-Methyl-2-p-tolylbenzo[*d*]oxazole (12aa): ¹H NMR (CDCl₃, 400 MHz)

5-Methyl-2-(4-nitrophenyl)benzo[*d*]oxazole (13aa): ¹H NMR (CDCl₃, 400 MHz)

5-Methyl-2-(4-nitrophenyl)benzo[d]oxazole (13aa): ¹³C NMR (CDCl₃, 100 MHz)

5-Methyl-2-(4-(methylthio)phenyl)benzo[*d*]oxazole (14aa): ¹H NMR (CDCl₃, 400 MHz)

5-Methyl-2-(4-(methylthio)phenyl)benzo[*d*]oxazole (14aa): ¹³C NMR (CDCl₃, 100 MHz)

2-(4-Chlorophenyl)-6-methoxybenzo[*d*]oxazole (15aa): ¹H NMR (CDCl₃, 400 MHz)

2-(4-Chlorophenyl)-6-methoxybenzo[*d*]oxazole (15aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Methoxy-2-phenylbenzo[d]oxazole (16aa): ¹H NMR (CDCl₃, 400 MHz)

6-Methoxy-2-phenylbenzo[d]oxazole (16aa): ¹³C NMR (CDCl₃, 100 MHz)

2-(4-Fluorophenyl)-6-methoxybenzo[d]oxazole (17aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Methoxy-2-p-tolylbenzo[d]oxazole (18aa): ¹H NMR (CDCl₃, 400 MHz)

6-Methoxy-2-p-tolylbenzo[d]oxazole (18aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Methoxy-2-(4-(methylthio)phenyl)benzo[*d*]oxazole (19aa): ¹H NMR (CDCl₃, 400 MHz)

6-Methoxy-2-(4-(methylthio)phenyl)benzo[d]oxazole (19aa): ¹³C NMR (CDCl₃, 100 MHz)

4-Bromo-2-(4-chlorophenyl)-6-methylbenzo[*d*]oxazole (20aa): ¹H NMR (CDCl₃, 400 MHz)

4-Bromo-2-(4-chlorophenyl)-6-methylbenzo[*d*]oxazole (20aa): ¹³C NMR (CDCl₃, 100 MHz)

4-Bromo-6-methyl-2-phenylbenzo[*d*]oxazole (21aa): ¹H NMR (CDCl₃, 400 MHz)

4-Bromo-6-methyl-2-phenylbenzo[*d*]oxazole (21aa): ¹³C NMR: (CDCl₃, 100 MHz)

1-(2-(4-Chlorophenyl)benzo[*d*]oxazol-6-yl)ethanone (22aa): ¹H NMR (CDCl₃, 400 MHz)

1-(2-(4-Chlorophenyl)benzo[*d*]oxazol-6-yl)ethanone (22aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Chloro-2-(4-chlorophenyl)benzo[*d*]oxazole (23aa): ¹H NMR (CDCl₃, 400 MHz)

6-Chloro-2-(4-chlorophenyl)benzo[*d*]oxazole (23aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Bromo-2-(4-chlorophenyl)benzo[*d*]oxazole (24aa): ¹H NMR (CDCl₃, 400 MHz)

6-Bromo-2-(4-chlorophenyl)benzo[*d*]oxazole (24aa): ¹³C NMR (CDCl₃, 100 MHz)

2-(4-Chlorophenyl)-6-(trifluoromethyl)benzo[d]oxazole (25aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Bromo-2-p-tolylbenzo[d]oxazole (26aa): ¹H NMR (CDCl₃, 400 MHz)

6-Bromo-2-p-tolylbenzo[d]oxazole (26aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Chloro-2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (27aa): ¹H NMR (CDCl₃, 400 MHz)

6-Chloro-2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (27aa): ¹³C NMR (CDCl₃, 100 MHz)

6-Bromo-2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (28aa): ¹H NMR (CDCl₃, 400 MHz)

6-Bromo-2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (28aa): ¹³C NMR (CDCl₃, 100 MHz)

Mixture of *N*-(2-Hydroxyphenyl)acetamide (1a') and N-phenylacetamide (1a"): ¹H NMR (DMSO-*d*₆, 600 MHz)

Mixture of N-(2-Hydroxyphenyl) acetamide (1a') and N-phenyl acetamide (1a''): $^{13}\mathrm{C}$ NMR (DMSO- d_6 , 150 MHz)

*N-p-*Tolylacetamide (2a''): ¹H NMR (CDCl₃, 600 MHz)

*N-p-*Tolylacetamide (2a''): ¹³C NMR (CDCl₃, 150 MHz)

