Supporting information

Three-dimensional Gd- TiO₂ fibrous photoelectrodes for efficient visible light driven photocatalytic performance

Junghyun Choi,[‡]^{*a*} P. Sudhagar,[‡]^{*a,b,d*} P. Lakshmipathiraj,^{*d*} Jung Woo Lee,^{*a*} Anitha Devadoss, ^{*a*} Sangkyu Lee,^{*c*} Taeseup Song,^{*c*} Seungki Hong, ^{*a*} S. Eito,^{*e*} C. Terashima,^{*d*} Tae Hee Han,^{*f*} Jeung Ku Kang,^{*g*} A. Fujishima,^{*d*} Yong Soo Kang^{**a,b*} and Ungyu Paik^{**a*}

Figure S1. High resolution transmission electron microscope (HRTEM) images of (a) pristine TiO_2 nanoparticles, (b) Gd-doped TiO_2 nanoparticles, (c) pristine TiO_2 nanofibers, and (d) Gd-doped TiO_2 nanofibers. (Note that SAED patterns were presented in the insets).

Figure S1. Choi et al.

Figure S2. Cross section SEM images of (a) TiO_2 nanoparticles, (b) TiO_2 nanofibers, (c) Gd-doped TiO_2 nanoparticles and (d) Gd-doped TiO_2 nanofiber electrodes.

Figure S2. Choi et al.

Figure S3. XRD spectra of pristine and Gd doped TiO₂ nanostructured electrodes

Figure S3. Choi et al.

Figure S4. Diffusion reflectance spectra of pristine and Gd-doped TiO_2 nanofibers and nanoparticle electrodes.

Figure S4. Choi et al.

	Ti 2p (%)	O1s (%)		
Electrode		Lattice oxide (530.7 eV)	Surface hydroxyl oxygen (532.5 eV)	Surface adsorbed oxygen (533.6 eV)
Pristine TiO ₂ NF	22.3	54.1	6.0	N/A
Gd-doped TiO ₂ NF	21.4	47.5	8.5	3.3
Pristine TiO ₂ NP	21.5	51.7	6.1	N/A
Gd-doped TiO ₂ NP	21.2	49.9	6.9	N/A

Table S1 Elemental composition (atomic %) of Ti and O in pristine and Gd-doped TiO_2 nanofiber electrodes.

Sample	VBM (eV)	Ionization Energy (eV)	Work function (eV)
TiO ₂ NP	3.36	7.71	4.32
Gd-TiO ₂ NP	3.33	7.83	4.50
TiO ₂ NF	3.43	7.03	3.60
Gd-TiO ₂ NP	3.40	7.36	3.96

Table S2. Electronic parameters of pristine and Gd doped TiO2 nanostructures (values estimated from UPS spectra Figure 5b)

Cartesian components (Gpa)						
	Х	у	Z			
x	0.050976	0.000000	0.000000			
у	0.000000	0.050976	0.000000			
Z	0.000000	0.000000	0.039055			

Table S3.Cartesian components of stress tensor of pure anatase TiO₂ lattice