Supporting Information Available for:

Insight in the dynamic ligand exchange process involved in bipyridyl linked arene ruthenium metalla-rectangles

Amine Garci,^a Simon Marti,^b Stefan Schürch,^b Bruno Therrien^a*

^aInstitute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland ^bDepartment of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland

*Corresponding author. E-mail: bruno.therrien@unine.ch FAX +41-32-7182511

Figure S1. ESI-MS spectrum of $[(p-cymene)_4Ru_4(oxalato)_2(bpy)_2](CF_3SO_3)_4$ after mixing the two homo-rectangles (t = 0h).

Figure S2. ESI-MS spectrum of $[(p-cymene)_4Ru_4(2,5-dioxydo-1,4-benzoquino-nato)_2(bpy)_2](CF_3SO_3)_4$ after mixing the two homo-rectangles (t = 0h).

Figure S3. ESI-MS spectrum of $[(p-cymene)_4Ru_4(5,8-dioxydo-1,4-naphtho-quinonato)_2(bpy)_2](CF_3SO_3)_4$ after mixing the two homo-rectangles (t = 0h).

Figure S4. ESI-MS spectrum of $[(p-cymene)_4Ru_4(2,5-dioxydo-1,4-benzoquino-nato)_2(bpy)_2](CF_3SO_3)_4$ after mixing the two homo-rectangles (t = 14 days, 40°C).

Figure S5. ESI-MS spectrum of $[(p-cymene)_4Ru_4(5,8-dioxydo-1,4-naphtho-quinonato)_2(bpy)_2](CF_3SO_3)_4$ after mixing the two homo-rectangles (t = 14 days, 40°C).

Figure S6. Calculated ESI-MS peaks corresponding to the species (in a 1:2:1 ratio), [(*p*-cymene)₄Ru₄(oxalato)₂(bpy)₂ + 2 CF₃SO₃]²⁺ (left), [(*p*-cymene)₄Ru₄(2,5-dioxydo-1,4-benzoquinonato)₂(bpy)₂ + 2 CF₃SO₃]²⁺ (middle) and [(*p*-cymene)₄Ru₄(5,8-dioxydo-1,4-naphthoquinonato)₂(bpy)₂ + 2 CF₃SO₃]²⁺ (right).

Figure S7. ¹H NMR and DOSY spectra (methanol- d_4 , 23°C) after addition of bpy- H_8 to [(p-cymene)₄Ru₄(oxalato)₂(bpy- $D_8)_2]^{4+}$ showing the resonances of the free bpy- H_8 (highlighted with red ovals) and the protons of the coordinated bpy- H_8 (blue ovals).

Figure S8. ESI-MS peaks corresponding to the species $[(p-cymene)_4Ru_4(oxalato)_2(bpy) + 2 CF_3SO_3]^{2+}$ and $[(p-cymene)_2Ru_2(oxalato)(bpy) + CF_3SO_3]^+$ (right).

Figure S9. Representative ¹H NMR spectra (6 hours) following the kinetic exchange between $[(p-\text{cymene})_4\text{Ru}_4(2,5-\text{dioxydo-1},4-\text{benzoquinonato})_2(\text{bpy-}H_8)_2]^{4+}$ (\blacksquare) and bpy- D_8 (*) (methanol- d_4 , 40°C), # indicates signal attributed to free *p*-cymene.

Figure S10. Molecular structure of the two fragments $[(p-cymene)_4Ru_4(5,8-dioxydo-1,4-naphthoquinonato)_2(bpy) + 2 CF_3SO_3]^{2+}$ and $[(p-cymene)_2Ru_2(5,8-dioxydo-1,4-naphthoquinonato)(bpy) + CF_3SO_3]^{+}$.

Figure S11. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(oxalato)_2(bpy-H_8)_2]^{4+}$ and bpy- D_8 at room temperature with a 1:1 ratio.

Figure S12. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(oxalato)_2(bpy-H_8)_2]^{4+}$ and bpy- D_8 at room temperature with a 1:10 ratio.

Figure S13. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(oxalato)_2(bpy-H_8)_2]^{4+}$ and bpy- D_8 at 40°C with a 1:1 ratio.

Figure S14. Initial rate of the exchange process between $[(p-cymene)_4 Ru_4(oxalato)_2(bpy-D_8)_2]^{4+}$ and bpy- H_8 at room temperature with a 1:1 ratio.

Figure S15. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(oxalato)_2(bpy-D_8)_2]^{4+}$ and bpy- H_8 at room temperature with a 1:10 ratio.

Figure S16. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(oxalato)_2(bpy-D_8)_2]^{4+}$ and bpy- H_8 at 40°C with a 1:1 ratio.

Figure S17. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(2,5-dioxydo-1,4-benzoquinonato)_2(bpy-H_8)_2]^{4+}$ and bpy- D_8 at 40°C with a 1:1 ratio.

Figure S18. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(5,8-dioxydo-1,4-naphthoquinonato)_2(bpy-H_8)_2]^{4+}$ and bpy- D_8 at room temperature with a 1:1 ratio.

Figure S19. Initial rate of the exchange process between $[(p-cymene)_4 Ru_4(5,8-dioxydo-1,4-naphthoquinonato)_2(bpy-$ *H* $_8)_2]^{4+}$ and bpy-*D*₈ at room temperature with a 1:10 ratio.

Figure S20. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(5,8-dioxydo-1,4-naphthoquinonato)_2(bpy-H_8)_2]^{4+}$ and bpy- D_8 at 40°C with a 1:1 ratio.

Figure S21. Initial rate of the exchange process between $[(p-cymene)_4Ru_4(5,8-dioxydo-1,4-naphthoquinonato)_2(bpy-<math>D_8)_2]^{4+}$ and bpy- H_8 at room temperature with a 1:1 ratio.

Figure S22. Initial rate of the exchange process between $[(p-cymene)_4\text{Ru}_4(5,8-dioxydo-1,4-naphthoquinonato)_2(bpy-<math>D_8)_2]^{4+}$ and bpy- H_8 at room temperature with a 1:10 ratio.

Figure S23. Initial rate of the exchange process between $[(p-cymene)_4 Ru_4(5,8-dioxydo-1,4-naphthoquinonato)_2(bpy-<math>D_8)_2]^{4+}$ and bpy- H_8 at 40°C with a 1:1 ratio.