Supporting Information

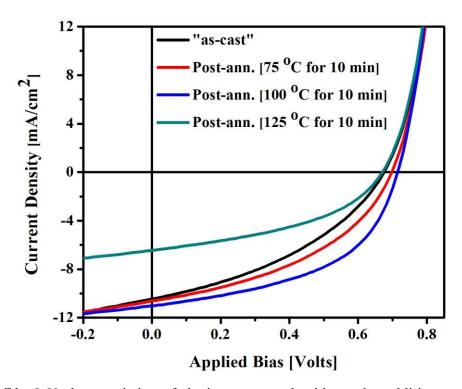
A dual-functional additive improves the performance of molecular bulk heterojunction photovoltaic cells

Mahmoud E. Farahat^{a,b,c}, Hung-Yu Wei^d, Mohammed Aziz Ibrahem^{b,c,e}, Karunakara Moorthy^{a,b}, Kung-Hwa Wei^f, and Chih-Wei Chu*^{b,g}

^aDepartment of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (ROC)

^bResearch Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan.

^cNanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (ROC)


^dInstitute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan (ROC)

^eDepartment of Physics, National Taiwan University, Taipei 106, Taiwan (ROC)

^fDepartment of Materials Science and Engineering, National Chiao Tung University,1001 Ta Hsueh Road, Hsinchu, 30050, Taiwan (ROC).

^gDepartment of Photonics, National Chiao Tung University, Hsinchu 300, Taiwan (ROC)

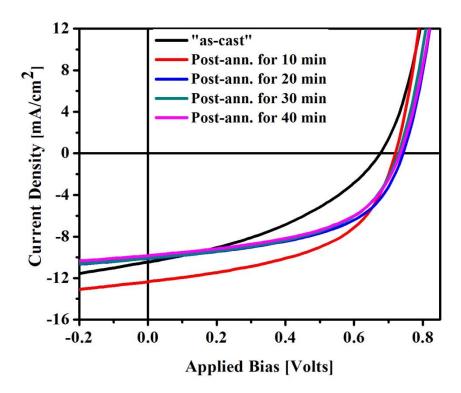

*Corrosponding author: Dr. Chih-Wei Chu, E-mail:gchu@gate.sinica.edu.tw

Figure S1. *J*–*V* characteristics of devices prepared without the additive and subjected to different post-annealing temperatures.

Table S1. Photovoltaic characteristics of devices prepared without the additive and subjected to different post-annealing temperatures.

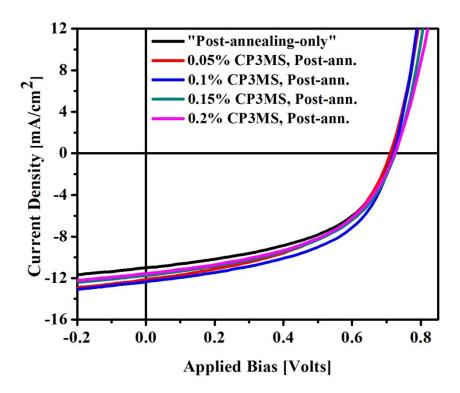

Annealing Temp. [°C]	$J_{ m sc}$ [mA/cm ²]	$V_{ m oc} \ [{ m V}]$	FF [%]	PCE [%]
"as-cast"	10.46	0.68	38.66	2.75
75°C	10.60	0.70	42.45	3.15
100 °C	10.20	0.71	48.33	3.50
125°C	6.45	0.67	43.04	1.86

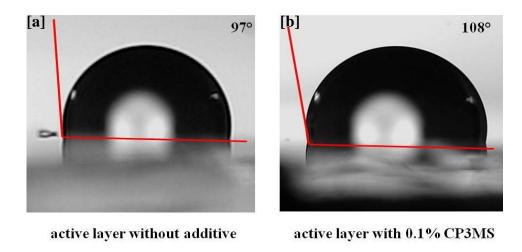
Figure S2. *J–V* characteristics of devices prepared with 0.1% of the additive CP3MS and post-annealing at 100 °C for different lengths of time.

Table S2. Photovoltaic characteristics of devices incorporating 0.1% of the additive that had been subjected to post-annealing at 100 °C for different lengths of time.

Annealing Time [min]	$J_{\rm sc}$ [mA/cm ²]	$V_{ m oc}$ [V]	FF [%]	PCE [%]
"as-cast"	10.46	0.68	38.66	2.75
10	12.36	0.72	51.14	4.55
20	10.13	0.74	52.43	3.93
30	10.09	0.73	51.45	3.79
40	9.85	0.73	51.87	3.73

Figure S3. *J–V* characteristics of devices prepared with different CP3MS concentrations and post-annealing at 100 °C for 10 min.

Al-cathode smoothly removed



Active layer attached with Al-cathode after peel-off

Post-annealed device

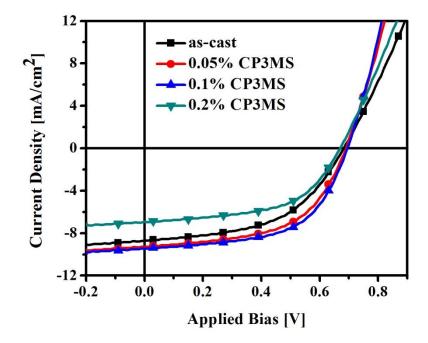

Device without Post annealing

Figure S4. Digital camera images showing the effect of post-annealing treatment on the interface between the active layer and the metal cathode.

Figure S5. Images of contact angles of active layers without additive (a) and with 0.1% CP3MS additive (b)

Scheme S1. Chemical structure of benzodithiophene (BDT)-based molecule (TBDTCNR)

Figure S6: *J–V* characteristics of devices prepared with different CP3MS concentrations for benzodithiophene (BDT)-based molecule (TBDTCNR)

Table S3. Photovoltaic characteristics of devices prepared with different CP3MS concentrations for benzodithiophene (BDT)-based molecule (TBDTCNR).

Additive Conc. [%]	$J_{ m sc}$ [mA/cm ²]	<i>V</i> _{oc} [V]	FF [%]	PCE [%]
"as-cast"	8.70	0.68	51.56	3.05
0.05% CP3MS	9.26	0.69	55.25	3.53
0.10% CP3MS	9.46	0.70	57.38	3.80
0.20% CP3MS	6.92	0.67	55.22	2.56