Electronic Supplementary Information

Mechanism of water oxidation by nanolayered manganese oxide: a step forward

Mohammad Mahdi Najafpour*^{a,b} and Mohsen Abbasi Isaloo^a

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran ^bCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran *Corresponding author; Phone: (+98) 241 415 3201; E-mail: <u>mmnajafpour@iasbs.ac.ir</u>

Table of Contents

	Page
Experimental section	4
S1 Set up for finding the rate of exchange for µ-O on	5
the surface of layered Mn oxides	
TEM images of layered Mn-K	6
SEM images of layered Mn-K	7
Diffuse reflectance infrared Fourier transform	8
spectrum of layered Mn-K.	
XRD of layered Mn-K prepared at 200 °C	9
O ₂ evolution	10
Different motifs are formed by adding H ₂ ¹⁸ O to	11
nanolayered Mn-K oxide	
DRIFT spectra of reference compound (black) and	12-21
reference compound after one week	
Measured standard reduction potentials in aqueous	22
solution (pH = 0) for water	
oxidation regarding different mechanisms (E0 vs.	
SHE).	
References	23

Material and methods

All reagents and solvents were purchased from commercial sources and were used without further purification. $H_2^{18}O$ (97%) was purchased from Aldrich. The oxide was synthesized by previously reported method (ref. S1).

Procedure

0.25 mL $H_2^{18}O$ (97%) was added to 125 mg K-Mn oxide in a small test tube. After different times, a few amounts of oxide were separated, added to Et_2O to remove water and stop water exchange, and dried under vacuum at room temperature (Scheme S1). As the reference compound, we used similar procedure by K-Mn oxide and treated it by $H_2^{16}O$.

Scheme S1 Set up for finding the rate of exchange for μ -O on the surface of layered Mn oxide by diffuse reflectance infrared Fourier transform spectroscopy.

Fig. S1 TEM images of nanolayered Mn-K. Scale bar in b is 12 nm.

Fig. S2 SEM images of nanolayered Mn-K.

Fig. S3 Diffuse reflectance infrared Fourier transform spectrum of nanolayered Mn-K.

Fig. S4 XRD of nanolayered Mn-K prepared at 200 °C.

Fig. S5 A: Oxygen evolution traces for the reaction of layered Mn oxide with Ce(IV) detected by MIMS for ${}^{16}O_2$ (m/z: 32; solid grey trace), ${}^{16}O^{18}O$ (m/z: 34; solid black trace), and ${}^{18}O_2$ (m/z:36; black dashed trace). Ce(IV) in H₂ ${}^{18}O$ enriched water was injected into the (non-enriched) oxide suspension at t = 0 s. Final oxide and Ce(IV) concentrations in the MIMS cell were 1 mgmL⁻¹ and 100 mm, respectively. H₂ ${}^{18}O$ enrichment of the reaction mixture: 5%. The absolute scale refers to an amplification factor of 1. B: Change in ${}^{18}\alpha$ value as a function of time calculated from the traces shown in A. Image and caption are from ref. S2.

Fig. S6 Different motifs are formed by adding $H_2^{18}O$ to nanolayered Mn-K oxide. Each motif may different DRIFT peak in Mn-O-Mn area. Arrows show isotopic oxygen in the structure.

Fig. S7 DRIFT spectra of reference compound (black) and reference compound after 30 s (red).

Fig. S8 DRIFT spectra of reference compound (black) and reference compound after 60 s (red).

Fig. S8 DRIFT spectra of reference compound (black) and reference compound after 90 s (red).

Fig. S9 DRIFT spectra of reference compound (black) and reference compound after 120 (red).

Fig. S10 DRIFT spectra of reference compound (black) and reference compound after 600 s (red).

Fig. S11 DRIFT spectra of reference compound (black) and reference compound after 900 s (red).

Fig. S12 DRIFT spectra of reference compound (black) and reference compound after 1800 s (red).

Fig. S13 DRIFT spectra of reference compound (black) and reference compound after 3 hours (red).

Fig. S13 DRIFT spectra of reference compound (black) and reference compound after 2 days (red).

Fig. S14 DRIFT spectra of reference compound (black) and reference compound after one week (red). Blue arrows show new peaks related to ¹⁸O in Mn oxide.

Table S1 Measured standard reduction potentials in aqueous solution (pH = 0) for water oxidation regarding different mechanisms (E_0 vs. SHE). Data are from ref. S3

Reaction	Standard E ₀
Four-Electron Reactions	
$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	1.229
$OH^- + H_2O \rightarrow O_2 + 3H^+ + 4e^-$	1.022
$2OH^- \rightarrow O_2 + 2H^+ + 4e^-$	0.815
$4OH^- \rightarrow O_2 + H_2O + 4e^-$	0.401
Two-Electron Reactions	
$2H_2O \rightarrow H_2O_2 + 2H^+ + 2e^-$	1.776
$2OH^- \rightarrow H_2O_2 + 2e^-$	0.948
$H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$	0.682
$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O + 2e^-$	-0.146
One-Electron Reactions	
$H_2O \rightarrow OH + H^+ + e^-$	2.848
$OH^- \rightarrow OH + e^-$	2.020
$H_2O_2 \rightarrow HO_2 + H^+ + e^-$	1.495
$H_2O_2 + OH^- \rightarrow HO_2 + H_2O + e^-$	0.667
$HO_2 \rightarrow O_2 + H^+ + e^-$	-0.130
$HO_2 + OH^- \rightarrow O_2 + H_2O + e^-$	-0.958

References

- S1 M. M. Najafpour, D. Jafarian Sedigh, B. Pashaei and S. Nayeri, *New J. Chem.*, 2013, **37**, 2448.
- S2 D. Shevela, S. Koroidov, M. M. Najafpour, J. Messinger and P. Kurz, *Chem. Eur.* J., 2011, **17**, 5415.
- S3 W. Ruettinger and G. C. Dismukes, Chem. Rev., 1997, 97, 1.