Supplementary Information

Electrochemical reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitor

Xuejun Liu^{a,b}, Xiang Qi^{a,b,*}, Zhen Zhang^{a,b}, Long Ren^{a,b}, Guolin Hao^{a,b}, Yundan Liu^{a,b}, Yao Wang^{a,b}, Kai Huang^{a,b}, Xiaolin Wei^{a,b}, Jun Li^{a,b}, Zongyu Huang^{a,b}, Jianxin Zhong^{a,b}

^{a,*} Faculty of Materials and Optoelectronic Physics, Xiangtan University, Hunan 411105, PR China

^b Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Hunan 411105, PR China

* Corresponding author. TEI: 0731-58292195. E-mail address: xqi@xtu.edu.cn (X. Qi)

Figure S1 (a) Cyclic voltammogram of stainless steel electrode in 2.5mgmL⁻¹ GO aqueous solution. (b) Electrochemical impedance spectra of ERGO synthesized for 0.5, 1, 2 and 4 hours respectively.

Figure S2 (a) Cyclic voltammetric curves of ERGO-PVDF at various scan rates (10, 20, 50 and 100 mV s⁻¹. (b) Cyclic voltammetric curves of ERGO synthesized for 2 hours and ERGO-PVDF at the scan rate of 50 mV s⁻¹.

Figure S3 Charge-discharge curves of ERGO-PVDF at different current densities (0.5, 1.0, 2.0 and 5 mA cm⁻²)