Supporting Information for:

Role of basic sites of substituted ferrocenes in interaction with the trinuclear 3,5bis(trifluoromethyl)pyrazolates: thermodynamics and structure of complexes

Alexey A. Titov[†], Oleg A. Filippov[†], Ekaterina A. Guseva[†], Alexander F. Smol'yakov[†], Fedor M. Dolgushin[†], Lina M. Epstein[†], Vitaly K. Belsky[‡], Elena S. Shubina[†]*

[†]A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russia

[‡]L.Ya. Karpov Institute of Physical Chemistry, Vorontsovo Pole St. 10, 103064, Moscow, Russia

IR spectroscopy

Figure S1: IR spectra in the v(CO) range $FcC(O)CH_3$ (0.001 M, 230 K, black) and in the presence of [AgL]₃ (0.001 M) in hexane at different temperatures: 290 K (red line), 260 K (green line), 240 K (blue line), d= 0.12 cm.

Figure S2 : The solid IR spectra in the v(CO) range of the of FcC(O)CH₃ (black line) and it's crystals with [AgL]₃ (red), with [CuL]₃ (blue), nujol.

Table S1: IR spectral characteristics of the two bands in the range v(CO) of FcC(O)CH₂Ph.

$v \text{ cm}^{-1}$	Hexane	THF	CH_2Cl_2	CH ₃ CN
$v_1 v_2$	1688 1674	1680 1667	1672 1660	1673 1661
D_2/D_1	2.15 (290K)	1,56(290K) 1,34(190K)		

NMR spectoscopy

Figure S3: ¹³C NMR spectra of $FcC(O)CH_3$ (297K blue line) and in the presence of $[AgL]_3$ (black line), DCM.

Figure S4: ¹³C NMR spectra of FcC(O)CH₃ (213K blue line) and in the presence of [AgL]₃ (black line), DCM.

Figure S5: ¹³C NMR spectra of FcC(O)CH₂Ph (213K, blue line) and in the presence of [AgL]₃ (black line), DCM.

FigureS6: ¹³C NMR of **2** at different temperature in CD_2Cl_2 , (Ph (A,B) and Cp (D,C) ranges), DCM.

Procedure for formation constants calculation from UV-vis spectra.

The absorbance at band maximum (463 nm) was expressed as: $D^{463} = \left(\varepsilon^{ketone} \cdot [ketone] + \varepsilon^{compl} \cdot [compl]\right) \cdot d$ (1) Where D is absorbance, ε^{ketone} and ε^{compl} is extinction coefficients at given wavelength of nonbonded ketone and complex correspondingly, [ketone] and [compl] equilibrium concentrations of nonbonded ketone and ketone binded with macrocycle.

 $\varepsilon^{\text{ketone}} = 284 (l/(\text{mol*cm}))$ was measured directly form UV experiment, while for $\varepsilon^{\text{compl}}$ determination the value of formation constant from IR experiment at 290K was used. Taking into account mass balance and formation constant equations:

$$[ketone] + [compl] = C_{CO}$$

$$[[ML]_3] + [compl] = C_{[ML]_3}$$

 $K_{290}^{f} = \frac{[compt]}{[ketome] \cdot [[ML]_{3}]}$

the values of equilibrium concentrations at 290 K were calculated and from equitation 1 the ϵ^{compl} value was obtained ($\epsilon^{compl} = 802 (l/(mol*cm))$ for $\{1 \cdot [ML]_3\}$)

Because of negligible change of phenylacetylferrocene E values from temperature we assume same behaviour of complexes and use ε^{compl} values for formation constants calculation assuming that changes of absorbance at 463 nm caused by change of [ketone] and [compl] in the same extent:

$$\Delta D^{463} = \left(\varepsilon^{ketone} \cdot -\Delta[ketone] + \varepsilon^{compl} \cdot \Delta[compl]\right) \cdot d = \Delta C \cdot d \cdot (\varepsilon^{compl} - \varepsilon^{ketone})$$
$$K_T^f = \frac{[compl]_{290} + \Delta C_T}{\left([ketone]_{290} - \Delta C_T\right) \cdot \left([[ML]_3]_{290} - \Delta C_T\right)}$$

where ΔC_T is change of complex concentration between given temperature T and 290K.