
Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support

Kan Huang, Yunfeng Li, Litao Yan, Yangchuan Xing* Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211

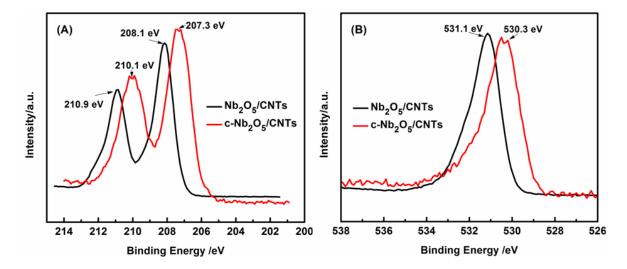

*Corresponding author. Tel.: +1 573 884 1067. E-mail address: xingy@missouri.edu (Y. Xing).

Fig. S1. EDX of Nb₂O₅/CNTs sample supported on a copper mesh TEM grid, showing the presence of Nb element. Some background elements (e.g. Al) of the sample support (TEM grid) are also present.

Fig. S2. Thermogravimetric analysis of Nb₂O₅/CNTs and CNTs. The analysis was carried out under air atmosphere with heating rate of 10 °C/min. The featured three stages of Nb₂O₅/CNTs are (I) removal of water and organic solvents, (II) densification of the amorphous Nb₂O₅ network and crystallization from amorphous to H-Nb₂O₅ (Hexagonal), and (III) oxidation of CNTs. Two flat stages between (I)/(II) and (II)/(III) suggest nearly no weight loss. Nb₂O₅ nanocoating is believed to protect CNTs from oxidation at relatively low temperature. Slow weight loss of CNTs starts at beginning and drops quickly beyond 600 °C until completed oxidation.

Fig. S3. XPS results of Nb 3d and O 1s from c-Nb₂O₅/CNTs and Nb₂O₅/CNTs. According to U.S. National Institute of Standards and Technology (NIST), Nb $3d_{5/2}$ in Nb₂O₅ and NbO₂ display binding energies (BEs) at 208.1 eV and 205.7 eV, respectively. (A) The Nb 3d BEs in c-Nb₂O₅/CNTs shifts towards lower oxidation state may suggest a formation of reduced oxide layer, and (B) The O 1s found at 530.3 eV in c-Nb₂O₅/CNTs suffers a negative shift compared with Nb₂O₅/CNT at 531.1 eV.