> Supplementary Material (ESI) for RSC Advances This journal is (c) The Royal Society of Chemistry 2013

Supporting Information

Regioselective asymmetric stereoablative O-alkylation of α-nitrophosphonates via o-azaxylylene intermediates generated in situ from 3-bromooxindoles

Xiaohua Xie, Linhai Jing,* Dabin Qin, Wujun He, Song Wu, Lunqiang Jin and Gan Luo

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nan Chong 637002, PR China.

E-mail: jlhhxg@cwnu.edu.cn

Contents

1.	General experimental details2
2.	General procedure for the synthesis of several new squaramide catalysts
3.	General procedure for the synthesis of diethyl α-nitrophosphonates 15-0
4.	General procedure for the synthesis of 3-bromooxindoles 27-11
5.	General procedure for the addition of diethyl α -nitrophosphonates to 3-bromooxindoles12-22
6.	References23
7.	NMR and HPLC spectra of the products24-129

1. General experimental details

All solvents were purified by using standard methods prior to use. Nitrophosphonates **1a-1f** were prepared according to the method reported in the literature.¹ 3-Bromooxindoles **2a-2r** were prepared according to the literature procedure.² Catalysts **3a-3c** were prepared according to the reported procedure.³ Catalysts **3d-3j** were prepared according to the method previously described.⁴

All reactions were carried out in reaction tubes with magnetic stirring and no special precautions were taken to exclude air from the reaction vessel. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on pre-coated silica gel plates. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 100 MHz and ³¹P NMR spectra were recorded at 162 MHz (Bruker Avance II 400) with CDCl₃ as solvent, Chemical shifts are reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. HRMS was recorded on a Bruker micrOTOF-Q II mass spectrometer. Enantiomeric excess (ee) were determined by HPLC analysis on a Shimadzu LC-20A. Optical rotation data were examined in CHCl₃ solution at 25 °C.

2. General procedure for the synthesis of new squaramide catalysts

To a solution of dimethyl squarate (213.2 mg, 1.5 mmol) in MeOH (5 mL) was added (+)dehydroabietylamine (427.9 mg, 1.5 mmol) in MeOH (2 mL). The reaction mixture was stirred at room temperature for 12 h and then concentrated in vacuo to afford the intermediate **A** as a white solid without further purification. To a solution of **A** (118.6 mg, 0.3 mmol) in MeOH (4 mL) was added a solution of quinine amine (106.7 mg, 0.33 mmol) in MeOH (1 mL). After 6 h, the reaction mixture was filtered, and the residue was subjected to flash chromatograph (DCM/MeOH 20:1) on silica gel to afford squaramide catalyst (148.3 mg, 72 %) as a white solid. Other three squaramide catalysts were synthesized according to the similar procedure.

White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.79 (s, 2H), 7.54 (s, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.27 (s, 1H), 7.09 (d, J = 7.3 Hz, 1H), 6.91 (d, J = 6.8 Hz, 1H), 6.81 (s, 1H), 5.90 (s, 2H), 4.94 (t, J = 13.2 Hz, 2H), 3.88 (s, 3H), 3.52 (s, 2H), 3.24 (s, 3H), 2.92 (s, 1H), 2.74 (s, 2H), 2.65 (s, 1H), 2.19 (t, J = 13.6 Hz, 2H),

1.75 (s, 1H), 1.64 (s, 1H), 1.51 (s, 3H), 1.44 (s, 3H), 1.29 (t, *J* = 13.1 Hz, 3H), 1.11 (t, *J* = 10.2 Hz, 1H), 0.87 (s, 1H), 0.79 (s, 3H), 0.71 (s, 1H), 0.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.90, 182.37, 168.71, 167.42, 158.31, 148.16, 147.19, 145.34, 144.76, 143.94, 142.56, 134,71, 131.88, 128.03, 126.86, 124.51, 124.03, 122.33, 119.99, 114.65, 102.08, 60.21, 59.30, 56.12, 54.26, 44.80, 38.31, 37.69, 37.44, 35.43, 33.30, 32,49, 30.11, 27.76, 26.68, 25.56, 24.35, 21.17, 20.24, 19.75, 18.51; HRMS *m*/*z* (ESI): Calcd for C₄₄H₅₄N₄O₃ [M+Na]⁺: 709.4094; Found: 709.4085.

White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 3.6 Hz, 1H), 7.92 (d, J = 9.1 Hz, 1H), 7.82 (d, J = 8.3 Hz, 1H), 7.72 (s, 1H), 7.55 (s, 1H), 7.37 (t, J = 11.4 Hz, 2H), 7.06 (d, J = 8.0 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 6.66 (s, 1H), 6.00 (s, 1H), 5.84-5.79 (m, 1H), 5.18 (d, J = 17.3 Hz, 1H), 5.03 (d, J = 10.4 Hz, 1H), 3.89 (s, 3H), 3.54 (s, 2H), 3.23 (d, J = 8.8 Hz, 3H), 2.90 (t, J =

12.3 Hz, 2H), 2.78 (d, 10.9 Hz, 1H), 2.69 (t, J = 7.1 Hz, 2H), 2.19 (d, J = 13.0 Hz, 2H), 1.73 (s, 1H), 1.65 (s,

1H), 1.55 (s, 5H), 1.24 (d, J = 12.5 Hz, 4H), 1.10 (d, J = 7.0 Hz, 9H), 0.87 (s, 1H), 0.82 (s, 3H), 0.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.88, 182.24, 168.40, 167.43, 158.31, 148.16, 147.19, 145.41, 144.71, 143.81, 141.14, 134.58, 131.86, 128.12, 126.78, 124.60, 124.00, 122.54, 119.76, 114.94, 101.89, 59.05, 56.10, 54.27, 49.48, 46.05, 44.94, 38.32, 37.60, 37.43, 35.50, 33.30, 30.18, 27.70, 26.52, 25.97, 25.54, 24.36, 24.33, 18.56, 18.47, 18.41; HRMS *m/z* (ESI): Calcd for C₄₄H₅₄N₄O₃ [M+Na]⁺: 709.4094; Found: 709.4077.

White solid; ¹**H NMR (400 MHz, CDCl₃)** δ 8.88 (d, J = 3.9 Hz, 1H), 8.39 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.81-7.73 (m, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.58 (s, 1H), 7.31 (s, 1H), 7.07 (d, J = 8.0 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.70 (s, 1H), 5.85-5.76 (m,1H), 5.15 (d, J = 17.2 Hz, 1H), 5.06 (d, J = 10.2 Hz, 1H), 3.51 (s, 2H), 3.29 (s, 1H), 2.71 (t, J = 7.1 Hz, 3H), 2.21 (s,

2H), 1.73 (s, 1H), 1.65 (s, 1H), 1.53 (s, 5H), 1.23 (t, J = 12.0 Hz, 4H), 1.09 (t, J = 5.4 Hz, 9H), 0.88 (s, 1H), 0.82 (s, 3H), 0.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.76, 182.49, 168.50, 167.46, 150.79, 148.56, 147.19, 145.73, 145.39, 141.05, 134.61, 130.37, 129.87, 127.48, 126.89, 126.83, 124.52, 124.00, 123.73, 119.68, 115.02, 60.21, 59.65, 54.32, 53.15, 49.42, 46.39, 45.02, 38.33, 37.63, 37.42, 35.51, 33.30, 30.09, 29.43, 27.74, 26.50, 25.68, 25.54, 24.34, 18.48; HRMS *m/z* (ESI): Calcd for C₄₃H₅₂N₄O₂ [M+Na]⁺: 679.3988; Found: 679.3985.

White solid; ¹**H NMR (400 MHz, CDCl₃)** δ 8.92 (d, J = 3.9 Hz, 1H), 8.47 (d, J = 8.2 Hz, 1H), 8.04 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.5 Hz, 2H), 7.66 (d, J = 7.0 Hz, 1H),7.58 (s, 1H), 7.30 (s, 1H), 7.12 (d, J = 7.8 Hz, 1H), 6.93 (d, J = 7.4 Hz, 1H), 6.83 (s, 1H), 5.91-5.83 (m, 2H), 4.93 (t, J = 15.1 Hz, 2H), 3.52 (d, J = 6.3 Hz, 2H), 3.26 (d, J = 6.5 Hz, 3H), 2.95 (t, J = 11.4

Hz, 1H), 2.75 (s, 2H), 2.66 (s, 1H), 2.24 (d, J = 11.7 Hz, 1H), 2.16 (s, 1H), 1.76 (s, 1H), 1.68 (d, J = 11.9 Hz, 1H), 1.51-1.57 (m, 5H), 1.31 (t, J = 11.1 Hz, 4H), 1.13 (t, J = 9.0 Hz, 9 H), 0.90 (s, 1 H), 0.81 (s, 3H), 0.61 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.74, 182.56, 168.75, 167.47, 150.86, 148.58, 147.24, 145.89, 145.39, 142.58, 134.75, 130.37, 129.88, 127.55, 126.89, 124.56, 124.07, 123.98, 119.94, 114.70, 59.86, 55.97, 54.26, 44.85, 38.34, 37.74, 37.48, 35.47, 33.32, 30.14, 27.69, 26.41, 25.62, 24.39, 20.30, 19.79, 18.54, 18.47; HRMS *m/z* (ESI): Calcd for C₄₃H₅₂N₄O₂ [M+Na]⁺: 679.3988; Found: 679.3990.

3. General procedure for the synthesis of diethyl α -nitrophosphonate 1¹

Triethyl phosphite (20 mmol) was slowly added to acyl chloride (25 mmol) at 0 °C. After being stirred at rt for 24 h, the reaction mixture was concentrated under vacuo and crude product was used for the next step without purification. To the solution of crude diethyl α -keto phosphonate (19.5 mmol) in ethanol (6 mL), hydroxylamine hydrochloride (25 mmol) was added followed by pyridine (35 mmol). After being stirred at rt for 12 h, the mixture was concentrated under vacuo, and the resulting residue was dissolved in CH₂Cl₂ (100 mL) and washed with 3N HCl (2 × 20 mL), water (1 × 20 mL) and brine (1 × 20 mL). Organic phase was dried over anhydrous Na₂SO₄, concentrated in vacuo to afford light yellow oil, which was used for the next step without purification.

To the solution of crude 1-hydroxyiminophosphonate (19 mmol) in CH_2Cl_2 (40 mL), *m*-CPBA (30 mol) was added. The resulting reaction mixture was stirred at rt for 72 h, and the organic layer was washed with the mixture of sat. aqueous NaHCO₃ and 10% aqueous Na₂S₂O₃ (2 × 50 mL), brine (1 × 100 mL) and dried over anhydrous Na₂SO₄. After the solvent being removed under reduced pressure, the residue was purified by column chromatography over silica gel (200-300 mesh) with PE/EtOAc (5:1) as eluting solvent to afford the corresponding product **1** as yellow oil.

Diethyl (1-nitroethyl)phosphonate (1a)¹: Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 5.03-4.94 (m, 1H), 4.26-4.18 (m, 3H), 4.13-4.06 (m, 1H), 1.82-1.76 (m, 3H), 1.38-1.32 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 79.43 (d, J = 143.6 Hz), 64.35 (d, J = 6.8 Hz), 64.19 (d, J = 6.5 Hz), 16.26 (t, J = 5.3 Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.7$ Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.20 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 6.5 Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 6.5$ Hz), 16.10 (d, J = 6.7 Hz), 14.43 (d, J = 6.5 Hz), 16.10 (d, J = 6.7 Hz),

13.49; **HRMS** *m/z* (**ESI**): Calcd for C₆H₁₄NO₅P [M+Na]⁺: 234.0508, Found: 234.0512.

Diethyl [nitro(phenyl)methyl]phosphonate (1b)⁵: Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (t, *J* = 3.7 Hz, 2H), 7.43 (d, *J* = 6.8 Hz, 3H), 5.93 (d, *J* = 16.8 Hz, 1H), 4.23-4.07 (m, 3H), 4.02-3.96 (m, 1H), 1.32 (t, *J* = 6.8 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl3): δ 130.35 (d, *J* = 2.0 Hz), 129.67, 129.60, 128.96 (d, *J* = 6.5Hz), 88.07 (d, *J* = 148.0

Hz), 64.64 (d, J = 8.2 Hz), 64.52, 16.23 (d, J = 5.8 Hz), 16.12 (d, J = 5.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.26$; HRMS *m/z* (ESI): Calcd for C₁₁H₁₆NO₅P [M+Na]⁺: 296.0664, Found: 296.0666.

Diethyl [(4-chlorophenyl)(nitro)methyl]phosphonate (1c): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (t, J = 4.1 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 5.90 (d, J = 17.0 Hz, 1H), 4.24-4.10 (m, 3H), 4.08-4.00 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz,

3H); ¹³C NMR (100 MHz, CDCl₃): δ 136.69, 131.10 (d, J = 6.5 Hz), 129.21, 126.74 (d, J = 4.5 Hz), 87.23 (d, J = 147.7 Hz), 64.85 (d, J = 7.0 Hz), 64.65 (d, J = 6.7 Hz), 16.23 (d, J = 6.3 Hz), 16.09 (d, J = 8.0 Hz); ³¹P NMR (162 MHz, CDCl₃): δ = 9.91; HRMS *m*/*z* (ESI): Calcd for C₁₁H₁₅ClNO₅P [M+Na]⁺: 330.0274, Found: 330.0278.

Diethyl [(3-chlorophenyl)(nitro)methyl]phosphonate (1d): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 1.4 Hz, 1H), 7.54 (d, J = 7.2 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 5.89 (d, J = 16.9 Hz, 1H), 4.06-4.24 (m, 4H), 1.34 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MLz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MLz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MLz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MLz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MLz, CDCl₃): δ 134.91, 130.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MLz, CDCl₃) Hz, ¹³C NMZ (100 MLz, ¹³C NMZ (100 MLz, ¹³C NMZ (100 MLz, ¹³C NMZ (100 MLz, ¹³C N

2.1 Hz), 130.18, 129.95 (d, J = 4.8 Hz), 129.72 (d, J = 6.5 Hz), 127.85 (d, J = 6.4 Hz), 88.40 (d, J = 147.1 Hz), 64.93 (d, J = 7.1 Hz), 64.71 (d, J = 6.7 Hz), 16.25 (d, J = 5.7 Hz), 16.18 (d, J = 5.9 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 9.63$; HRMS *m/z* (ESI): Calcd for C₁₁H₁₅ClNO₅P [M+Na]⁺: 330.0274, Found: 330.0259.

Diethyl [(4-methylphenyl)(nitro)methyl]phosphonate (1e): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 5.88 (d, *J* = 16.7 Hz, 1H), 4.21-4.07 (m, 3H), 3.93-4.00 (m, 1H), 2.34 (s, 3H), 1.30 (t, *J* = 7.0 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.58, 129.62, 129.61 (d, *J* = 7.5 Hz), 129.53,

125.28 (d, J = 4.7 Hz), 88.84 (d, J = 148.7 Hz), 64.56 (d, J = 5.0 Hz), 64.50 (d, J = 4.5 Hz), 21.20, 16.21 (d, J = 5.9 Hz), 16.12 (d, J = 5.7 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.51$; HRMS *m/z* (ESI): Calcd for C₁₂H₁₈NO₅P [M+Na]⁺: 310.0821, Found: 310.0820.

Diethyl [(3-methylphenyl)(nitro)methyl]phosphonate (1f): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 6.1 Hz, 2H), 7.32 (t, J = 7.8 Hz, 1H), 7.26 (d, J = 7.2 Hz, 1H), 5.90 (d, J = 16.6 Hz, 1H), 4.19-4.09 (m, 3H), 4.04-3.98 (m, 1H), 2.38 (s, 3H), 1.33 (t, J = 7.0 Hz, 3H), 1.21 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, ¹³C NMR (100 MHz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, ¹³C NMR (100 MLz, CDCl₃): δ 138.84, 131.12 (d, J = 7.0 Hz, ¹³C NMR (100 MLz, CDCl₃): δ 138.84 (d, J = 7.0 Hz, ¹³C NMR (100 MLz, ¹³C NMZ) (d, J = 7.0 Hz, ¹³C NMZ (d, J = 7.0 Hz, ¹³C NMZ) (d, J = 7.0 Hz, ¹³C NMZ)

2.0 Hz), 130.13 (d, J = 6.5 Hz), 128.82, 128.08 (d, J = 4.5 Hz), 126.65 (d, J = 6.3 Hz), 88.11 (d, J = 148.3 Hz), 64.66 (d, J = 7.1 Hz), 64.53 (d, J = 6.7 Hz), 21.32, 16.23 (d, J = 5.8 Hz), 16.13 (d, J = 5.7 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.40$; HRMS *m/z* (ESI): Calcd for C₁₂H₁₈NO₅P [M+Na]⁺: 310.0821, Found: 310.0821.

4. General procedure for the synthesis of 3-bromooxindoles 2²

A mixture of indolin-2-one (5 mmol), aldehyde (5 mmol) and pyrrolidine (0.05 mL) in ethanol (25 mL) was heated to reflux for 4 h. After the mixture was cooled to 0 °C, sodium hydroborate (15 mmol) was added in batches. The resulting mixture was stirred at rt for 3 h, quenched by water and extracted by dichloromethane. The organic phase was dried over anhydrous Na_2SO_4 and evaporated in vacuo. The residue was dissolved in dichloromethane (20 mL) and triethylamine (0.1 mL) was added. The resulting mixture was cooled to 0 °C and then *N*-bromosuccinimide (5.1 mmol) was added over 30 minutes by portion. The reaction was then warmed to room temperature and stirred for 1 h. After being concentrated in vacuo, the residue was subjected to flash chromatograph (PE/EtOAc 13:1) on silica gel to afford 3-bromooxindole **2** as a light yellow solid.

3-Benzyl-3-bromo-2,3-dihydro-1H-indol-2-one (2a)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.15-7.07 (m, 4H), 7.01 (d, *J* = 6.8 Hz, 2H), 6.74 (d, *J* = 7.8 Hz, 1H), 3.76-3.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.22, 139.67, 134.13, 130.43, 130.13, 129.59, 128.13, 127.33, 125.52, 123.07 , 110.67, 56.56, 45.06; HRMS *m/z* (ESI): Calcd for C₁₅H₁₂BrNO [M+Na]⁺: 324.0000; Found:

324.0006.

3-Bromo-3-[(4-methoxyphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2b): Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.5 Hz, 2H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 8.5 Hz, 2H), 3.70-3.64 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 176.33, 158.68, 139.57, 131.52, 130.08, 129.73, 126.17, 125.46, 123.05, 113.50, 110.71, 56.72, 55.05, 44.21; HRMS *m/z* (ESI): Calcd for C₁₆H₁₄BrNO₂ [M+Na]⁺: 354.0106; Found: 354.0099.

3-Bromo-3-[(3-methoxyphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2c): Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.42 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.00 (t, *J* = 7.9 Hz, 1H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.68-6.66 (m, 1H), 6.59 (d, *J* = 7.5 Hz, 1H), 6.52 (s, 1H), 3.75-3.65 (m, 2H), 3.59 (d, *J* = 5.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.04, 159.14, 139.67, 135.55, 130.13, 129.66, 129.08, 125.48, 123.05, 122.80, 115.44, 113.42, 110.64, 56.38, 55.00, 45.09; HRMS *m/z* (ESI): Calcd for C₁₆H₁₄BrNO₂

[M+Na]⁺: 354.0106; Found: 354.0099.

3-Bromo-3-[(2-methoxyphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2d): Llight yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.38 (d, *J* = 7.5 Hz, 1H), 7.20-7.09 (m, 3H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.77-6.70 (m, 2H), 6.62 (d, *J* = 8.2 Hz, 1H), 4.01 (d, *J* = 13.6 Hz, 1H), 3.65 (d, *J* = 13.6 Hz, 1H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.60, 157.14, 139.42, 131.48, 129.81, 129.75, 128.75, 126.29, 123.19, 122.29, 120.26, 110.12, 110.05, 57.18, 54.63,

37.66; **HRMS** *m*/*z* (**ESI**): Calcd for C₁₆H₁₄BrNO₂ [M+Na]⁺: 354.0106; Found: 354.0094.

3-Bromo-3-[(3,4-dimethoxyphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2e): Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.71 (d, *J* = 7.7 Hz, 1H), 6.59 (t, *J* = 9.8 Hz, 2H), 6.41 (s, 1H), 3.77 (s, 3H), 3.71-3.65 (m, 2H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.61, 148.16, 148.09, 139.72, 130.09, 129.87, 126.50, 125.45, 122.96, 122.88, 113.28, 110.66, 110.52, 56.33, 55.65, 55.57, 44.84; HRMS *m/z* (ESI): Calcd for C₁₇H₁₆BrNO₃

[M+Na]+:384.0212; Found: 384.0202.

3-Bromo-3-[(4-methylphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2f)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.89 (t, *J* = 8.9 Hz, 4H), 6.74 (d, *J* = 7.8 Hz, 1H), 3.72-3.63 (m, 2H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.12, 139.65, 136.91, 131.05, 130.31, 130.04, 129.73, 128.84, 125.52, 123.02, 110.61, 56.65, 44.64, 21.04; HRMS *m/z* (ESI): Calcd for C₁₆H₁₄BrNO [M+Na]⁺: 338.0157; Found: 338.0160.

3-Bromo-3-[(3-methylphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2g)^{2*a*}: Light yellow solid ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 7.02-6.90 (m, 2H), 6.82 (s, 1H), 6.78 (d, *J* = 7.2 Hz, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 3.72-3.63 (m, 2H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.97, 139.59, 137.69, 134.03, 131.24, 130.05, 129.69, 128.03, 127.93, 127.42, 125.58, 122.99,

110.52, 56.54, 44.98, 21.21; **HRMS** *m/z* (**ESI**): Calcd for C₁₆H₁₄BrNO [M+Na]⁺: 338.0157; Found: 338.0169.

3-Bromo-3-[(2-methylphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2h)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.24-7.19 (m, 2H), 7.11-6.98 (m, 5H), 6.80 (d, *J* = 7.7 Hz, 1H), 3.76-3.68 (m, 2H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.24, 139.45,

137.36, 132.85, 130.55, 130.51, 130.12, 129.97, 127.46, 125.95, 125.58, 122.99, 110.45, 57.16, 40.94, 20.10; **HRMS** *m/z* (ESI): Calcd for C₁₆H₁₄BrNO [M+Na]⁺: 338.0157; Found: 338.0163.

3-Bromo-3-[(4-tert-butylphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2i): Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.39 (d, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 15.3 Hz, 1H), 7.14-7.07 (m, 3H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.78-6.75 (m, 1H), 3.68 (s, 2H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.66, 150.15, 139.83, 131.10, 130.15, 130.10, 129.81, 125.50, 125.08, 123.04, 110.90, 56.94, 44.41, 34.40, 31.26; HRMS *m/z* (ESI): Calcd for C₁₉H₂₀BrNO [M+Na]⁺: 380.0626; Found: 380.0639.

3-Bromo-3-[(4-chlorophenyl)methyl]-2,3-dihydro-1H-indol-2-one (2j)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.12-7.06 (m, 3H), 6.93 (d, *J* = 8.3 Hz, 2H), 6.72 (t, *J* = 7.6 Hz, 1H), 3.71 (d, *J* = 13.4 Hz, 1H), 3.65 (d, *J* = 13.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.42, 139.47, 133.38, 132.60, 131.76, 130.29, 129.28, 128.33, 125.43, 123.21, 110.61, 55.85, 44.38; HRMS *m/z* (ESI): Calcd for C₁₅H₁₁BrClNO [M+Na]⁺: 357.9611; Found:357.9598.

3-Bromo-3-[(3-chlorophenyl)methyl]-2,3-dihydro-1H-indol-2-one (2k)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.38 (d, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 2H), 7.05-6.89 (m, 2H), 6.90 (d, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 3.70 (d, *J* = 13.5 Hz, 1H), 3.64 (d, *J* = 13.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.61, 139.49, 136.08, 133.86, 130.48, 130.35, 129.36, 129.19, 128.60, 127.61, 125.45,

123.25, 110.70, 55.84, 44.57; **HRMS** *m/z* **(ESI):** Calcd for C₁₅H₁₁BrClNO [M+Na]⁺: 357.9611; Found: 357.9597.

3-Bromo-3-[(2-chlorophenyl)methyl]-2,3-dihydro-1H-indol-2-one (2l)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.37-7.33 (m, 2H), 7.23-7.17 (m, 2H), 7.13-7.08 (m, 2H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 4.05 (d, *J* = 14.2 Hz, 1H), 3.84 (d, *J* = 14.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.09, 139.17, 134.77, 132.67, 131.51, 130.19, 129.65, 129.16, 128.84, 126.72, 126.31, 123.03, 110.26, 56.45, 40.57; HRMS *m/z* (ESI): Calcd

for C₁₅H₁₁BrClNO [M+Na]⁺: 357.9611; Found: 357.9607.

3-Bromo-3-[(4-fluorophenyl)methyl]-2,3-dihydro-1H-indol-2-one (2m): Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.98-6.94 (m, 2H), 6.80-6.72 (m, 3H), 3.74-3.63 (m, 2H); ¹³C NMR

(100 MHz, CDCl₃) δ 175.57, 163.23 (d, J = 244.9 Hz), 139.49, 132.07 (d, J = 8.1 Hz), 130.24, 129.89 (d, J = 3.3 Hz), 129.37, 125.44, 123.20, 115.15 (d, J = 21.2 Hz), 110.54, 56.07, 44.26; HRMS *m/z* (ESI): Calcd for C₁₅H₁₁BrFNO [M+Na]+: 341.9906; Found: 341.9904.

3-Bromo-3-(thiophen-2-ylmethyl)-2,3-dihydro-1H-indol-2-one (2n)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 5.0 Hz, 1H), 6.81 (d, *J* = 7.8 Hz, 3H), 6.76 (t, *J* = 4.3 Hz, 1H), 6.72 (d, *J* = 3.1 Hz, 1H), 4.00 (d, *J* = 14.5 Hz, 1H), 3.89 (d, *J* = 14.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.17, 140.13, 135.64, 130.45, 129.48, 128.16, 126.60, 125.47, 125.24, 123.30, 110.89,

55.44, 39.26; **HRMS** *m/z* (**ESI**): Calcd for C₁₃H₁₀BrNOS [M+Na]⁺: 329.9564; Found: 329.9567.

3-Bromo-3-(2,2-dimethylpropyl)-2,3-dihydro-1H-indol-2-one (20): Light yellow solid; ¹H **NMR (400 MHz, CDCl₃)** δ 8.53 (s, 1H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.28(t, *J* = 7.6 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 2.78 (d, *J* = 14.2 Hz, 1H), 2.62 (d, *J* = 14.2 Hz, 1H), 0.74 (s, 9H); ¹³C **NMR (100 MHz, CDCl₃)** δ 177.24, 139.27, 130.49, 130.17, 126.29, 122.91, 110.88, 58.07, 51.25, 33.30, 30.67; **HRMS** *m/z* **(ESI):** Calcd for C₁₃H₁₆BrNO [M+Na]⁺:

304.0313; Found: 304.0310.

3-Bromo-3-allyl-2,3-dihydro-1H-indol-2-one (2p)^{2*a*}: Light yellow solid; ¹H NMR (400 MHz, **CDCl₃**) δ 9.05 (s, 1H), 7.41 (d, J = 7.5 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 5.62-5.52 (m, 1H), 5.12 (t, J = 15.7 Hz, 1H), 3.15 (dd, J = 6.3 Hz, 6.2 Hz, 1H), 3.05 (dd, J = 7.8 Hz, 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.63, 139.70, 130.76, 130.16, 130.01, 125.06, 123.31, 120.91, 110.89, 55.51, 43.28; HRMS *m/z* (ESI): Calcd for C₁₁H₁₀BrNO

[M+Na]⁺: 273.9844; Found: 273.9839.

3-Bromo-6-chloro-3-[(2-methylphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2q): Llight yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.11-7.05 (m, 4H), 7.01 (t, *J* = 7.4 Hz, 2H), 6.84 (s, 1H), 3.74-3.65 (m, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.20, 140.44, 137.26, 135.87, 132.53, 130.70, 130.45, 128.36, 127.66, 126.90, 125.75, 123.13, 111.13, 56.18, 40.76, 20.14; HRMS *m/z* (ESI): Calcd for C₁₆H₁₃BrClNO [M+Na]⁺:

371.9767; Found: 371.9767.

3-Bromo-5-methoxy-3-[(2-methylphenyl)methyl]-2,3-dihydro-1H-indol-2-one (2r): Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.13-7.00 (m, 4H), 6.78-

6.76 (m, 1H), 6.71 (d, J = 8.7 Hz, 2H), 3.71 (s, 3H), 3.69 (d, J = 7.7 Hz, 2H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.18, 155.94, 137.43, 132.84, 132.67, 130.94, 130.53, 127.52, 125.65, 115.76, 112.04, 110.99, 57.44, 55.76, 40.86, 20.15; HRMS *m/z* (ESI): Calcd for C₁₇H₁₆BrNO₂ [M+Na]⁺: 368.0262; Found: 368.0262.

5. General procedure for the addition of diethyl α-nitrophosphonates to 3-bromooxindoles

Diethyl α -nitrophosphonate 1 (0.11mmol), catalyst **3j** (0.01 mmol) and chloroform (1 mL) were added to an oven dried tube, and the mixture was stirred at rt for 5 minutes. Then, 3-bromooxindole 2 (0.1 mmol) and Na₃PO₄·12H₂O (0.11 mmol) was added. After being stirred at 30 °C for 4 h, the reaction mixture was purified by flash chromatography on silica gel (PE/EtOAc 3:1-1:1) to afford the corresponding products **4**. The enantiomeric excess was determined by chiral-phase HPLC analysis.

N-{[(3R)-3-benzyl-2-oxo-2,3-dihydro-1H-indol-3-yl]oxy}-1-

(diethoxyphosphoryl)ethanimine oxide (4a): The reaction was carried out following the general procedure using 1a (23.2 mg, 0.11mmol), 2a (30.1 mg, 0.1mmol) to afford 4a: Yellow oil; 27.7 mg, 64% yield; 81:19 Z/E; $[\alpha]_D^{25}$ -51.1 (*c* 0.59, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 10.64 min (major),

15.69 min (minor), 84% ee; ¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (s, 1H), 7.23 (t, *J* = 10.2 Hz, 4H), 7.03 (d, *J* = 6.8 Hz, 2H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.78 (t, *J* = 7.1 Hz, 1H), 6.62 (d, *J* = 6.9 Hz, 1H), 4.03 (s, 2H), 3.83-3.77 (m, 1H), 3.64-3.58 (m, 1H), 3.45 (d, *J* = 13.6 Hz, 1H), 2.99 (d, *J* = 13.5 Hz, 1H), 2.22 (d, *J* = 11.4 Hz, 3H), 1.22-1.19 (m, 3H), 0.97 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.82, 141.51, 132.53, 131.17, 130.06, 130.03, 127.89, 127.51, 124.13, 121.71, 110.64, 110.56, 82.34, 63.82 (d, *J* = 6.1 Hz), 63.33 (d, *J* = 5.7 Hz), 41.00, 16.06 (d, *J* = 6.5 Hz), 15.54 (d, *J* = 6.8 Hz), 15.43 (d, *J* = 9.2 Hz); ³¹P NMR (162 MHz, CDCl₃): δ = 6.01; HRMS *m/z* (ESI): Calcd for C₂₁H₂₅N₂O₆P [M+Na]⁺: 455.1348, Found: 455.1348.

N-{[(3R)-3-benzyl-2-oxo-2,3-dihydro-1H-indol-3-yl]oxy}-1-(diethoxyphosphoryl)-1-

phenylmethanimine oxide (4b): The reaction was carried out following the general procedure using **1b** (30.0 mg, 0.11mmol), **2a** (30.1 mg, 0.1mmol) to afford **4b**: Yellow solid; 37.1 mg, 75% yield; m.p. 25-26 °C; 92:8 Z/E; $[\alpha]_D^{25}$ -51.5 (*c* 0.37, CHCl₃); **HPLC:** Chiralpak AD-H (85:15 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 22.94 min (major),

26.17 min (minor), 75% ee; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.51-7.45 (m, 5H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.94 (t, *J* = 7.6 Hz, 2H), 6.86-6.79 (m, 2H), 6.52 (d, *J* = 7.4 Hz, 2H), 6.31 (t, *J* = 7.1 Hz, 1H), 4.00-3.92 (m, 3H), 3.75-3.69 (m, 1H), 3.21 (d, *J* = 13.9 Hz, 1H), 2.71 (t, *J* = 14.4 Hz, 1H), 1.10 (t, *J* = 7.0 Hz, 3H), 1.01 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.77, 141.29, 132.52, 130.78, 130.12 (d, *J* = 3.9 Hz), 130.00, 129.80, 129.72, 129.32, 128.51, 127.66, 126.86, 125.16, 124,38, 121.62, 110.52, 82.68, 63.90 (d, *J*= 6.0 Hz), 63.64 (d, *J* = 5.8 Hz), 40.79, 16.03 (d, *J* = 6.7 Hz), 15.93 (d, *J* = 6.9 Hz); ³¹P NMR

(162 MHz, CDCl₃): $\delta = 5.09$; HRMS *m/z* (ESI): Calcd for C₂₆H₂₇N₂O₆P [M+Na]⁺: 517.1505, Found: 517.1495.

2-({Ethoxy[({[(3R)-3-[(4-methoxyphenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4c): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2b (33.1 mg, 0.1mmol) to afford 4c: Yellow solid; 35.6 mg, 68% yield; m.p. 47-48 °C; 90:10 Z/E; [α]_D²⁵ -56.0 (*c* 0.36, CHCl₃); HPLC: Chiralpak AD-H (70:30 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 11.96$ min (minor), 12.82 min (major), 81% ee; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H), 7.49 (t, J = 6.4 Hz, 3H), 7.47 (d, J = 4.2 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 6.79 (t, J = 7.5 Hz, 1H), 6.49-6.42 (m, 4H), 6.37 (d, J = 7.2 Hz, 1H), 4.03-3.91 (m, 3H), 3.76-3.69 (m, 4H), 3.15 (d, J = 14.0 Hz, 1H), 2.68 (d, J = 14.0 Hz, 1H), 1.11 (t, J = 7.0 Hz, 3H), 1.02 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.33, 158.43, 141.06, 131.78, 130.15 (d, J = 4.1 Hz), 129.91, 129.81, 129.25, 128.48, 125.38, 124.46, 124.42, 121.73, 113.06, 110.24, 82.59, 63.82 (d, J = 5.9 Hz), 63.59 (d, J = 5.8 Hz), 55.09, 39.99, 16.03 (d, J = 6.6 Hz), 15.93 (d, J = 6.9 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.09$; HRMS *m/z* (ESI): Calcd for C₂₇H₂₉N₂O₇P [M+Na]⁺: 547.1610, Found: 547.1603.

2-({Ethoxy[({[(3R)-3-[(3-methoxyphenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4d): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2c (33.1 mg, 0.1mmol) to afford 4d: Yellow solid; 38.3 mg, 73% yield; m.p. 39-40 °C; 92:8 Z/E; $[\alpha]_D^{25}$ -65.1 (*c* 0.76, CHCl₃); HPLC: Chiralpak OD-H (80:20 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 11.49$ min (minor), 19.23 min (major), 82% ee; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (s, 1H), 7.47 (s, 5H), 7.21 (t, J = 7.5 Hz, 1H), 6.92-6.83 (m, 2H), 6.78 (d, J = 7.8 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 6.53 (d, J = 7.3 Hz, 1H), 6.15 (t, J = 9.1 Hz, 2H), 4.00-3.92 (m, 3H), 3.80-3.72 (m, 1H), 3.55 (s, 3H), 3.15 (d, J = 13.6 Hz, 1H), 2.76 (d, J = 13.6 Hz, 1H), 1.11 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.68, 158.69, 141.50, 133.81, 130.10 (d, J = 4.3 Hz), 129.71, 129.63, 129.29, 128.71, 128.39, 125.31, 124.30, 123.16, 121.57, 116.17, 112.87, 110.68, 82.84, 63.92 (d, J = 5.9 Hz), 63.71 (d, J = 5.8 Hz), 54.98, 40.88, 16.03 (d, J = 6.9 Hz), 15.95 (d, J = 6.9 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.20$; HRMS *m/z* (ESI): Calcd for C₂₇H₂₉N₂O₇P [M+Na]⁺: 547.1610, Found: 547.1595.

2-({Ethoxy[({[(3R)-3-[(2-methoxyphenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4e): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2d (33.1 mg, 0.1mmol) to afford 4e: Yellow solid; 38.3 mg, 73% yield; m.p. 75-76 °C; 91:9 Z/E; $[\alpha]_D^{25}$ -88.6 (c 0.55, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 11.80$ min (major), 21.88 min (minor), 91% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (s, 1H), 7.50-7.44 (m, 5H), 7.16 (t, J = 7.7 Hz, 1H), 7.08 (t, J = 7.1 Hz, 1H), 6.82-6.75 (m, 2H), 6.55 (d, J = 17.3 Hz, 1H), 6.49-6.42 (m, 2H), 6.18 (d, J = 7.4 Hz, 1H), 4.03-3.90 (m, 3H), 3.74-3.64 (m, 1H), 3.22 (s, 3H), 3.14 (d, J = 14.1 Hz, 1H), 3.01 (d, J = 14.1 Hz, 1H), 1.10 (t, J = 6.9 Hz, 3H), 0.99 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.38, 157.62, 141.20, 131.99, 130.18 (d, J = 4.1 Hz), 129.84, 129.76, 129.56, 129.23, 128.45, 128.21, 125.71, 123.71, 121.48, 121.21, 120.05, 110.28, 109.82, 82.81, 63.96 (d, J = 5.97 Hz), 63.64 (d, J = 5.7 Hz), 54.68, 33.17, 16.07 (d, J = 6.6 Hz), 15.95 (d, J = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.18$; HRMS *m/z* (ESI): Calcd for C₂₇H₂₉N₂O₇P [M+Na]⁺: 547.1610, Found: 547.1602.

azanylidene)(phenyl)methyl](ethoxy)phosphoryl}oxy)ethylidyne (4f): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2e (36.1 mg, 0.1mmol) to afford 4f: Yellow solid; 33.8 mg, 61% yield; m.p. 49-50 °C; 91:9 Z/E; [α]_D²⁵ -73.4 (*c* 0.38, CHCl₃); HPLC: Chiralpak AD-H (75:25 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 14.23 min (minor), 17.24 min (major), 81% ee; ¹H

NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.47 (s, 5H), 7.21 (t, *J* = 7.3 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 7.2 Hz, 1H), 6.46 (d, *J* = 8.2 Hz, 1H), 6.20 (d, *J* = 8.1 Hz, 1H), 6.05 (s, 1H), 4.00-3.93 (m, 3H), 3.80 (s, 3H), 3.77-3.71 (m, 1H), 3.50 (s, 3H), 3.09 (d, *J* = 8.1 Hz, 1H), 2.78 (d, *J* = 13.6 Hz, 1H), 1.11 (t, *J* = 6.9 Hz, 3H), 1.03 (t, *J* = 6.9 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃):** δ 176.41, 147.86, 147.69, 141.46, 130.15 (d, *J* = 3.9 Hz), 130.02, 129.82, 129.74, 129.22, 128.32, 125.61, 124.48, 124.31, 123.11, 121.57, 113.90, 110.60, 110.50, 82.95, 63.89 (d, *J* = 5.9 Hz), 63.71 (d, *J* = 5.7 Hz), 55.68, 55.58, 40.44, 16.06, 15.99 (d, *J* = 7.4 Hz); ³¹**P NMR (162 MHz, CDCl₃):** δ = 5.17; **HRMS** *m/z* **(ESI):** Calcd for C₂₈H₃₁N₂O₈P [M+Na]⁺: 577.1716, Found: 577.1696.

2-({Ethoxy[({[(3R)-3-[(4-methylphenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4g): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2f (31.5 mg, 0.1mmol) to afford 4g: Yellow solid; 40.6 mg, 80% yield; m.p. 45-46 °C; 92:8 Z/E; $[\alpha]_D^{25}$ -58.3 (c 0.41, CHCl₃); HPLC: Chiralpak OD-H (80:20 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 10.70$ min (minor), 16.54 min (major), 83% ee; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (s, 1H), 7.51-7.45 (m, 5H), 7.21 (t, J = 7.32, Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 6.79-6.74 (m, 3H), 6.40 (t, J = 6.8 Hz, 3H), 4.03-3.91 (m, 3H), 3.78-3.68 (m, 1H), 3.16 (d, J = 13.9 Hz, 1H), 2.70 (d, J = 13.9 Hz, 1H), 2.24 (s, 3H), 1.11 (t, J = 7.0 Hz, 3H), 1.02 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.80, 141.34, 136.40, 130.62, 130.14 (d, J = 3.9 Hz), 129.93, 129.83, 129.75, 129.32, 129.26, 128.46, 128.38, 125.31, 124.37, 121.57,

110.52, 82.76, 63.90 (d, J = 6.0 Hz), 63.65 (d, J = 5.8 Hz), 40.42, 21.08, 16.03 (d, J = 6.7 Hz), 15.93 (d, J = 6.9 Hz); ³¹**P** NMR (168 MHz, CDCl₃): $\delta = 5.15$; HRMS *m/z* (ESI): Calcd for C₂₇H₂₉N₂O₆P [M+Na]⁺: 531.1661, Found: 531.1654.

2-({Ethoxy[({[(3R)-3-[(3-methylphenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4h): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2g (31.5 mg, 0.1mmol) to afford 4h: Yellow solid; 33.0 mg, 65% yield; m.p. 40-41 °C; 91:9 Z/E; [α]_D²⁵ -70.2 (*c* 0.42, CHCl₃); HPLC: Chiralpak AD-H (90:10 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 40.88$ min (major), 45.90 min (minor), 88% ee; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (s, 1H), 7.49 (m, 5H), 7.21 (t, J = 7.6 Hz, 1H), 6.93-6.76 (m, 4H), 6.45 (d, J = 7.3 Hz, 1H), 6.39 (s, 1H), 6.32 (d, J = 7.5 Hz, 1H), 4.03-3.92 (m, 3H), 3.78-3.72 (m, 1H), 3.15 (d, J = 13.7 Hz, 1H), 2.73 (d, J = 13.7 Hz, 1 H), 2.10 (s, 3H), 1.11 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.72, 141.29, 137.04, 132.32, 131.63, 130.14 (d, J = 4.1 Hz), 129.92, 129.81, 129.72, 129.32, 128.41, 127.78, 127.68, 127.60, 125.47, 124.36, 121.54, 110.52, 82.73, 63.90 (d, J = 5.9 Hz), 63.70 (d, J = 5.7 Hz), 40.81, 21.26, 16.03 (d, J = 6.7 Hz), 15.95 (d, J = 7.2 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.21$; HRMS *m/z* (ESI): Calcd for C₂₇H₂₉N₂O₆P [M+Na]⁺: 531.1661, Found: 531.1646.

2-({Ethoxy[({[(3R)-3-[(2-methylphenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4i): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2h (31.5 mg, 0.1mmol) to afford 4i: Yellow solid; 40.6 mg, 80% yield; m.p. 44-45 °C; 94:6 Z/E; $[\alpha]_D^{25}$ -66.7 (c 0.57, CHCl₃); HPLC: Chiralpak OD-H (80:20 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 10.04$ min (minor), 12.75 min (major), 92% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.30 (s, 1H), 7.51 (d, J = 7.0 Hz, 3H), 7.42 (d, J = 6.6 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 7.03 (t, J = 7.3 Hz, 1H), 6.88 (t, J = 7.2 Hz, 2H), 6.79 (t, J = 7.4 Hz, 1H), 6.70 (t, J = 7.4 Hz, 1H), 6.37 (d, J = 7.4 Hz, 1H), 6.12 (d, J = 7.2 Hz, 1H), 4.03-3.93 (m, 3H), 3.76-3.71 (m, 1H), 3.19 (d, J = 14.7 Hz, 1H), 2.85 (d, J = 14.5 Hz, 1H), 1.53 (s, 3H), 1.11 (t, J = 6.3 Hz, 3H), 1.01 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.53, 141.26, 137.74, 131.53, 131.38, 130.07 (d, J = 3.9 Hz), 129.96, 129.78, 129.65, 129.30, 128.30, 126.93, 125.42, 125.10, 124.13, 121.60, 110.60, 82.69, 63.96 (d, J = 6.0 Hz), 63.66 (d, J = 5.8 Hz), 36.71, 19.18, 15.04 (d, J = 6.6 Hz), 15.94 (d, J = 6.9 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.09$; HRMS *m/z* (ESI): Calcd for C₂₇H₂₉N₂O₆P [M+Na]⁺: 531.1661, Found: 531.1644.

2-(4-{[(3R)-3-({[(Diethoxyphosphoryl)(phenyl)methylidene]-oxo-λ⁵azanylidene}oxy)-2-oxo-1λ²-indol-3- yl]methyl}phenyl)-2-methylpropylidyne (4j):

The reaction was carried out following the general procedure using **1b** (30.0 mg, 0.11mmol), **2i** (35.7 mg, 0.1mmol) to afford **4j**: White solid; 46.2 mg, 84% yield; m.p. 101-102 °C; 93:7 *Z/E*; $[\alpha]_D^{25}$ -44.5 (*c* 0.50, CHCl₃); **HPLC:** Chiralpak OD-H (80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 8.52 min (minor), 13.95 min (major), 80% ee; ¹**H NMR (400 MHz, CDCl₃)**: δ 7.99 (s, 1H), 7.52-7.42 (m, 5H), 7.22 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.87-6.81 (m, 2H), 6.46 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.4 Hz, 1H), 4.03-3.89 (m, 3H), 3.75-3.67 (m, 1H), 3.20 (d, *J* = 14.0 Hz, 1H), 2.66 (d, *J* = 14.0 Hz, 1H), 1.26 (s, 9H), 1.10 (t, *J* = 7.0 Hz, 3H); 1.3C **NMR (100 MHz, CDCl₃)**: δ 177.13, 149.59, 141.46, 130.48, 130.13 (d, *J* = 4.0 Hz), 129.96, 129.78, 129.69, 129.44, 129.28, 128.45, 125.13, 124.55, 124.48, 121.47, 110.62, 82.83, 63.94 (d, *J* = 6.0 Hz), 63.62 (d, *J* = 5.7 Hz), 40.33, 34.33, 31.31, 16.04 (d, *J* = 6.6 Hz), 15.92 (d, *J* = 6.9 Hz); ³¹**P NMR (162 MHz, CDCl₃)**: δ = 5.10; **HRMS** *m/z* **(ESI)**: Calcd for C₃₀H₃₅N₂O₆P [M+Na]⁺: 573.2131, Found: 573.2107.

 $2-(\{[(\{[(3R)-3-[(4-Chlorophenyl)methyl]-2-oxo-1\lambda^2-indol-3-yl]oxy\}-oxo-\lambda^5-$

azanylidene)(phenyl)methyl](ethoxy)phosphoryl}oxy)ethylidyne (4k): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2j (33.5 mg, 0.1mmol) to afford 4k: Yellow solid; 37.5 mg, 71% yield; m.p. 83-84 °C; 91:9 Z/E; $[\alpha]_D^{25}$ -45.5 (*c* 0.35, CHCl₃); HPLC: Chiralpak AD-H (85:15 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 25.75 min (major), 31.04 min (minor), 73% ee; ¹H

NMR (400 MHz, CDCl₃): δ 8.06 (s, 1H), 7.50 (t, J = 6.5 Hz, 3H), 7.43 (d, J = 7.4 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 6.92-6.81 (m, 4H), 6.45 (d, J = 8.3 Hz, 2H), 6.34 (d, J = 7.5 Hz, 1H), 4.02-3.90 (m, 3H), 3.77-3.70 (m, 1H), 3.18 (d, J = 14.0 Hz, 1H), 2.67 (d, J = 14.0 Hz, 1H), 1.09 (t, J = 7.0 Hz, 3H), 1.02 (t, J = 7.0 Hz, 3H); ¹³C **NMR(100 MHz, CDCl₃):** δ 176.61, 141.39, 132.87, 132.06, 131.10, 130.18, 130.05 (d, J = 4.0 Hz), 129.78, 129.70, 129.39, 128.57, 127.83, 124.87, 124.22, 121.66, 110.77, 82.32, 63.96 (d, J = 6.0 Hz), 63.74, 40.18, 16.01 (d, J = 6.9 Hz), 15.93 (d, J = 7.3 Hz); ³¹P **NMR (162 MHz, CDCl₃):** $\delta = 4.94$; **HRMS** *m/z* **(ESI):** Calcd for C₂₆H₂₆ClN₂O₆P [M+Na]⁺: 551.1115, Found: 551.1121.

azanylidene)(phenyl)methyl](ethoxy)phosphoryl}oxy)ethylidyne (4l): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2k (33.5 mg, 0.1mmol) to afford 4l: Yellow solid; 35.9 mg, 68% yield; m.p. 42-43 °C; 91:9 Z/E; $[\alpha]_D^{25}$ -108.2 (*c* 0.26, CHCl₃); HPLC: Chiralpak AD-H (70:30 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 8.45 min (minor), 8.98 min (major), 73% ee; ¹H NMR (400 MHz,

CDCl₃): δ 8.21 (s, 1H), 7.51-7.45 (m, 5H), 7.27-7.21 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.92-6.80 (m, 3H), 6.58 (s, 1H), 6.42 (t, J = 6.1 Hz, 2H), 3.96-3.92 (m, 3H), 3.80-3.73 (m, 1H), 3.15 (d, J = 13.9 Hz, 1H), 2.71 (d, J = 13.9 Hz, 1H), 1.10 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz), CDCl₃): δ 176.46,

141.37, 134.59, 133.28, 130.79, 130.23, 129.98 (d, J = 3.9 Hz), 129.62, 129.52, 128.97, 128.51, 127.24, 124.99, 124.15, 121.69, 119.21, 117.22, 110.82, 82.33, 63.95 (d, J = 5.9 Hz), 63.75 (d, J = 5.8 Hz), 40.51, 16.06, 15.94 (d, J = 7.3 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.01$; HRMS *m/z* (ESI): Calcd for C₂₆H₂₆ClN₂O₆P [M+Na]⁺: 551.1115, Found: 551.1137.

$2-(\{[(\{[(3R)-3-[(2-Chlorophenyl)methyl]-2-oxo-1\lambda^2-indol-3-yl]oxy\}-oxo-\lambda^5-(\lambda^2-indol-3-yl]oxy\}-oxo-\lambda^5-(\lambda^2-indol-3-yl]oxy\}-oxo-\lambda^5-(\lambda^2-indol-3-yl]oxy\}-oxo-\lambda^5-(\lambda^2-indol-3-yl]oxy\}-oxo-\lambda^5-(\lambda^2-indol-3-yl]oxy}-oxo-\lambda^5-(\lambda^2-indol-3-yl]ox)}-oxo-\lambda^5-(\lambda^2-indol-3-indol-3-yl]ox)}-oxo-\lambda^5-(\lambda^2-indol-3-$

azanylidene)(phenyl)methyl](ethoxy)phosphoryl}oxy)ethylidyne (4m): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2l (33.5 mg, 0.1mmol) to afford 4m: Yellow solid, 39.6 mg, 75% yield; m.p. 62-63 °C; 92:8 Z/E; $[\alpha]_D^{25}$ -77.4 (*c* 0.49, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-PrOH,

1.0mL/min, 254nm, $t_R = 11.05$ min (major), 19.65 min (minor), 84% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 7.52-7.43 (m, 5H), 7.24-7.20 (m, 1H), 7.11-7.03 (m, 2H), 6.85 (d, J = 7.8 Hz, 1H), 6.81-6.72 (m, 2H), 6.48-6.46 (m, 1H), 6.10 (d, J = 7.3 Hz, 1H), 4.03-3.91 (m, 3H), 3.75-3.65 (m, 1H), 3.20 (s, 2H), 1.10 t, J = 7.0 Hz, 3H), 1.00 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.97, 141.36, 135.52, 132.40, 131.23, 130.16 (d, J = 3.9 Hz), 130.06, 129.84, 129.76, 129.33, 128.88, 128.57, 128.28, 126.29, 124.68, 123.74, 121.77, 110.63, 82.33, 64.00 (d, J = 6.0 Hz), 63.68 (d, J = 5.8 Hz), 36.71, 16.03 (d, J = 6.6 Hz), 15.92 (d, J = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 4.93$; HRMS (ESI+): Calcd for C₂₆H₂₆ClN₂O₆P [M+Na]⁺: 551.1115, Found: 551.1103.

2-({Ethoxy[({[(3R)-3-[(4-fluorophenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4n): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2m (31.9 mg, 0.1mmol) to afford 4n: Yellow solid; 34.8 mg, 68% yield; m.p. 87-88 °C; 92:8 Z/E; $[\alpha]_D^{25}$ -44.8 (*c* 0.26, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 17.03 min (major), 18.64 min (minor), 71% ee; ¹H NMR (400

MHz, CDCl₃): δ 8.05 (s, 1H), 7.50 (t, J = 6.9 Hz, 3H), 7.45 (d, J = 5.4 Hz, 2H), 7.22 (t, J = 7.6 Hz, 1H), 6.88-6.81 (m, 2H), 6.63 (t, J = 8.6 Hz, 2H), 6.49-6.45 (m, 2H), 6.30 (t, J = 7.1 Hz, 1H), 4.00-3.91 (m, 3H), 3.76-3.68 (m, 1H), 3.19 (d, J = 14.1 Hz, 1H), 2.68 (d, J = 14.1 Hz, 1H), 1.09 (t, J = 7.0 Hz, 3H), 1.01 (t, J = 7.0 Hz, 3H); ¹³C **NMR (100 MHz, CDCl₃):** δ 176.78, 163.80 (d, J = 244.0 Hz), 141.42, 132.29 (d, J = 8.0 Hz), 130.13, 130.09 (d, J = 4.1Hz), 129.81, 129.72, 129.36, 128.56, 128.33 (d, J = 3.1 Hz), 124.92, 124.23, 121.62, 114.52 (d, J = 21.1 Hz), 110.74, 82.55, 63.96 (d, J = 6.0 Hz), 63.69 (d, J = 5.8 Hz), 39.99, 16.01 (d, J = 6.7 Hz), 15.91 (d, J = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 4.97$; HRMS *m/z* (ESI): Calcd for C₂₆H₂₆FN₂O₆P [M+Na]⁺: 535.1411, Found: 535.1396.

azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (40): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2n (30.7 mg, 0.1mmol) to afford 4o: Yellow solid; 36.0 mg, 72% yield; m.p. 38-39 °C; 93:7 Z/E; $[\alpha]_D^{25}$ -44.9 (*c* 0.23, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 21.49 min (minor), 23.93 min (major), 84% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.49 (s, 5H), 7.24 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 5.2 Hz, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 7.8 Hz, 1H), 6.69-6.67 (m, 1H), 6.55 (d, *J* = 7.3 Hz, 1H), 6.23 (d, *J* = 3.0 Hz, 1H), 4.04-3.93 (m, 3H), 3.80-3.72 (m, 1H), 3.35 (d, *J* = 14.8 Hz, 1H), 3.04 (d, *J* = 14.8 Hz, 1H), 1.11 (t, *J* = 7.0 Hz, 3H), 1.03 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.31, 141.70, 133.62, 130.32, 130.19 (d, *J* = 3.9 Hz), 129.78, 129.70, 129.35, 128.56, 126.51, 125.04, 124.95, 124.09, 121.85, 110.72, 82.35, 63.99 (d, *J* = 6.0 Hz), 63.74 (d, *J* = 5.8 Hz), 34.87, 16.03 (d, *J* = 6.7 Hz), 15.94 (d, *J* = 6.9 Hz); ³¹P NMR (162 MHz, CDCl₃): δ = 5.09; HRMS *m*/z (ESI): Calcd for C₂₄H₃₁N₂O₆P [M+Na]⁺: 523.1069, Found: 523.1049.

3-[(3R)-3-({[(Diethoxyphosphoryl)(phenyl)methylidene]-oxo- λ^5 -azanylidene}oxy)-2oxo-1 λ^2 -indol-3-yl]- 2,2-dimethylpropylidyne (4p): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2o (28.1 mg, 0.1mmol) to afford 4p: Yellow solid; 33.7 mg, 71% yield; m.p. 39-40 °C; 92:8 Z/E; [α]_D²⁵ -58.4 (*c* 0.32, CHCl₃); HPLC: Chiralpak OD-H (80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm,

t_R = 6.06 min (minor), 12.49 min (major), 90% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.16 (s, 1H), 7.45 (t, J = 6.5 Hz, 5H), 7.26 (d, J = 10.1 Hz, 1H), 7.00 (s, 2H), 6.86 (d, J = 7.7 Hz, 1H), 4.02-3.89 (m, 3H), 3.72-3.66 (m, 1H), 1.90 (d, J = 14.0 Hz, 1H), 1.65 (d, J = 14.0 Hz, 1H), 1.12 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H), 0.63 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 177.24, 142.13, 130.31, 130.25 (d, J = 4.1 Hz), 130.02, 129.93, 129.19, 128.15, 126.34, 124.69, 121.77, 110.66, 83.67, 63.83 (d, J = 5.9 Hz), 63.51 (d, J = 5.8 Hz), 46.76, 30.66, 16.07 (d, J = 6.6 Hz), 15.97 (d, J = 7.2 Hz); ³¹P NMR (162 MHz, CDCl₃): δ = 5.39; HRMS *m/z* (ESI): Calcd for $C_{21}H_{25}N_2O_6P$ [M+Na]⁺: 497.1920, Found: 497.1799.

1-(diethoxyphosphoryl)-N-{[(3R)-2-oxo-3-(prop-2-en-1-yl)-2,3-dihydro-1H-indol-3-

yl]oxy}-1-phenylmethanimine oxide (4q): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2p (25.1 mg, 0.1mmol) to afford 4q: Colourless oil; 34.4 mg, 80% yield; 81:19 Z/E; $[\alpha]_D^{25}$ -69.1 (*c* 0.29, CHCl₃); HPLC: Chiralpak OD-H (80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 12.81 min (minor),

18.45 min (major), 70% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 7.51-7.44 (m, 5H), 7.25 (t, *J* = 6.0 Hz, 1H), 6.98 (d, *J* = 6.3 Hz, 1H), 6.88 (d, *J* = 7.7 Hz, 1H), 5.27-5.17 (m, 1H), 4.90-4.80 (m, 2H), 4.03-3.92 (m, 3H), 3.77-3.67 (m, 1H), 2.57 (dd, *J* = 6.5 Hz, 6.0 Hz, 1H), 2.30 (dd, *J* = 8.3 Hz, 8.3 Hz, 1H), 1.11 (t, *J* = 7.0 Hz, 3H), 1.02 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.52, 141.61, 130.21(d, *J* = 4.5 Hz), 129.77, 129.68, 129.25, 128.67, 128.11, 125.44, 123.88, 121.89, 120.87, 110.77, 82.20, 63.92 (d, *J* = 5.9 Hz), 63.63 (d, *J* = 5.7

Hz), 39.10, 16.05 (d, J = 6.7 Hz), 15.95 (d, J = 7.1 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.15$; HRMS m/z (ESI): Calcd for C₂₂H₂₅N₂O₆P [M+Na]⁺: 467.1348, Found: 467.1360.

2-({[({[(3R)-6-Chloro-3-[(2-methylphenyl)methyl]-2-oxo-1 λ^2 -indol-3-yl]oxy}-oxo- λ^5 -azanylidene)(phenyl)methyl](ethoxy)phosphoryl}oxy)ethylidyne (4r): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2q (34.9 mg, 0.1mmol) to afford 4r: Yellow solid; 37.9 mg, 70% yield; m.p. 75-76 °C; 92:8 Z/E; [α]_D²⁵ -102.9 (*c* 0.30, CHCl₃); HPLC: Chiralpak OD-H

(80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, $t_R = 7.88$ min (minor), 9.95 min (major), 75% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 7.53-7.40 (m, 5H), 7.02 (t, J = 7.4Hz, 1H), 6.94-6.86 (m, 2H), 6.77-6.68 (m, 2H), 6.33 (d, J = 7.3 Hz, 1H), 5.99-5.94 (m, 1H), 4.05-3.93 (m, 3H), 3.88-3.75 (m, 1H), 3.16 (d, J = 14.7 Hz, 1H), 2.81 (d, J = 14.7 Hz, 1H), 1.55 (s, 3H), 1.13-1.03 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 177.07, 142.52, 137.65, 135.73, 131.37, 131.28, 130.00 (d, J = 4.0 Hz), 129.91, 129.57, 129.48, 129.43, 128.64, 127.11, 125.48, 124.89, 123.72, 121.55, 111.23, 82.05, 64.00 (d, J = 6.1 Hz), 63.90 (d, J = 5.9 Hz), 36.62, 19.32, 15.98 (d, J = 5.2 Hz), 15.93 (d, J = 5.5 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.12$; HRMS *m/z* (ESI): Calcd for C₂₇H₂₈ClN₂O₆P [M+Na]⁺: 565.1272, Found: 565.1253.

2-({Ethoxy[({[(3R)-5-methoxy-3-[(2-methylphenyl)methyl]-2-oxo- $1\lambda^2$ -indol-3yl]oxy}-oxo- λ^5 -azanylidene)(phenyl)methyl]phosphoryl}oxy)ethylidyne (4s): The reaction was carried out following the general procedure using 1b (30.0 mg, 0.11mmol), 2r (34.5 mg, 0.1mmol) to afford 4s: Yellow solid; 34.4 mg, 64% yield; m.p. 85-86 °C; 91:9 Z/E; $[\alpha]_D^{25}$ -67.9 (c 0.26, CHCl₃); HPLC: Chiralpak OD-H

(80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254nm, $t_R = 13.19$ min (minor), 18.51 min (major), 83% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.52-7.47 (m, 3H), 7.43 (d, J = 7.0 Hz, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.81-6.74 (m, 2H), 6.69 (t, J = 7.4 Hz, 1H), 6.35 (d, J = 7.5 Hz, 1H), 5.61 (d, J = 10.9 Hz, 1H), 4.03-3.93 (m, 3H), 3.81-3.71 (m, 1H), 3.50 (s, 3H), 3.18 (d, J = 14.7 Hz, 1H), 2.84 (d, J = 14.7 Hz, 1H), 1.53 (s, 3H), 1.10 (t, J = 7.0 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.45, 154.95, 137.84, 134.44, 131.56, 131.34, 130.08 (d, J = 4.1 Hz), 129.80, 129.74, 129.35, 128.57, 126.99, 126.13, 125.47, 115.49, 111.08, 110.45, 82.87, 63.92 (d, J = 5.9 Hz), 63.71 (d, J = 5.8 Hz), 55.55, 36.73, 19.21, 16.00 (d, J = 6.3 Hz), 15.89 (d, J = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃): δ = 5.09; HRMS *m*/*z* (ESI): Calcd for C₂₈H₃₁N₂O₇P [M+Na]⁺: 561.1767, Found: 561.1748.

2-({[(4-Chlorophenyl)({[(3R)-3-[(2-methylphenyl)methyl]-2-oxo-1λ²-indol-3-

yl]oxy}- oxo-λ⁵-azanylidene)methyl](ethoxy)phosphoryl}oxy)ethylidyne (4t): The reaction was carried out following the general procedure using 1c (33.8 mg, 0.11mmol), 2h (31.5 mg, 0.1mmol) to afford 4t: Yellow solid; 43.4 mg, 80% yield; m.p. 57-58 °C;

93:7 *Z/E*; $[\alpha]_D^{25}$ -89.6 (*c* 0.13, CHCl₃); **HPLC**: Chiralpak OD-H (70:30 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 8.25 min (minor), 9.68 min (major), 81% ee; ¹**H NMR (400 MHz, CDCl₃):** δ 8.07 (s, 1H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 7.7 Hz, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.93-6.68 (m, 2H), 6.82-6.77 (m, 2H), 6.42 (d, *J* = 7.5 Hz, 1H), 6.11 (d, *J* = 7.4 Hz, 1H), 4.04-3.88 (m, 3H), 3.74-3.68 (m, 1H), 3.19 (d, *J* = 14.7 Hz, 1H), 2.84 (d, *J* = 14.7 Hz, 1H), 1.55 (s, 3H), 1.12 (t, *J* = 7.0 Hz, 3H), 1.01 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃):** δ 177.28, 141.17, 137.78, 135.58, 131.45 (d, *J* = 4.1 Hz), 131.37, 131.29, 130.11, 129.95, 128.89, 128.21, 128.13, 127.20, 125.37, 124.92, 124.20, 121.73, 110.58, 82.76, 64.06 (d, *J* = 5.9 Hz), 63.74 (d, *J* = 5.9 Hz), 36.82, 19.24, 16.05 (d, *J* = 6.6 Hz), 15.93 (d, *J* = 6.9 Hz); ³¹**P NMR (162 MHz, CDCl₃):** δ = 4.57; **HRMS** *m/z* **(ESI):** Calcd for C₂₇H₂₈ClN₂O₆P [M+Na]⁺: 565.1272, Found: 565.1262.

2-(4-{[(3R)-3-({[(4-Chlorophenyl)(diethoxyphosphoryl)methylidene]-oxo- λ^5 azanylidene}oxy)-2-oxo-1 λ^2 -indol-3-yl]methyl}phenyl)-2-methylpropylidyne (4u): The reaction was carried out following the general procedure using 1c (33.8 mg, 0.11mmol), 2i (35.7 mg, 0.1mmol) to afford 4u: Yellow solid; 43.8 mg, 75% yield; m.p. 85-86 °C; 92:8 Z/E; [α]_D²⁵ -63.3 (*c* 0.48, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-PrOH, 1.0 mL/min, 254 nm, t_R = 10.30 min (major), 17.97 min

(minor), 70% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.35 (s, 1H), 7.45 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 7.8 Hz, 2H), 6.84 (d, J = 7.0 Hz, 2H), 6.46 (d, J = 7.8 Hz, 2H), 6.21 (d, J = 7.5 Hz, 1H), 4.03-3.86 (m, 3H), 3.72-3.66 (m, 1H), 3.23 (d, J = 14.1 Hz, 1H), 2.64 (d, J = 14.1 Hz, 1H), 1.28 (s, 9H), 1.12(t, J = 6.9 Hz, 3H), 1.00 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.00, 150.01, 141.47, 135.46, 131.58 (d, J = 4.0 Hz), 130.49, 130.05, 129.30, 128.79, 128.32, 128.24, 124.90, 124.55, 124.49, 121.50, 110.60, 82.90, 64.03 (d, J = 6.0 Hz), 63.68 (d, J = 5.8 Hz), 40.31, 34.37, 31.30, 16.07 (d, J = 6.4 Hz), 15.93 (d, J = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃): δ = 4.59; HRMS *m/z* (ESI): Calcd for C₃₀H₃₄ClN₂O₆P [M+Na]⁺: 607.1741, Found: 607.1728.

2-({[(3-Chlorophenyl)({[(3R)-3-[(2-methylphenyl)methyl]-2-oxo-1λ²-indol-3-

yl]oxy}- oxo- λ^5 -azanylidene)methyl](ethoxy)phosphoryl}oxy)ethylidyne (4v): The reaction was carried out following the general procedure using 1d (33.8 mg, 0.11mmol), 2h (31.5 mg, 0.1mmol) to afford 4v: Yellow solid; 36.9 mg, 68% yield; m.p. 55-56 °C; 93:7 Z/E; [α]_D²⁵ -66.6 (*c* 0.23, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-

PrOH, 1.0 mL/min, 254 nm, $t_R = 8.21$ min (major), 13.85 min (minor), 71% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.64 (d, J = 6.9 Hz, 1H), 7.57-7.45 (m, 3H), 7.29-7.24 (m, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.88-6.85 (m, 1H), 6.80-6.75 (m, 2H), 6.36 (d, J = 7.4 Hz, 1H), 6.23 (d, J = 7.5 Hz, 1H), 4.13 – 4.01 (m, 3H), 3.98-3.86 (m, 1H), 3.11 (d, J = 14.6 Hz, 1H), 2.82 (d, J = 14.6 Hz, 1H), 1.50 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.66, 140.52, 137.74, 134.42, 132.21

(d, J = 3.7 Hz), 131.53, 131.19, 130.90, 130.81, 129.83, 129.79, 129.66, 128.84, 127.18, 127.15, 125.39, 124.88, 124.27, 121.84, 110.12, 81.89, 64.00, 63.92 (d, <math>J = 5.6 Hz), 37.05, 19.16, 15.98 (d, $J = 6.3 \text{ Hz}), 15.89; {}^{31}P$ **NMR (162 MHz, CDCl₃):** $\delta = 4.10$; **HRMS** *m/z* **(ESI):** Calcd for C₂₇H₂₈ClN₂O₆P [M+Na]⁺: 565.1272, Found: 565.1259.

2-({Ethoxy[(4-methylphenyl)({[(3R)-3-[(2-methylphenyl)methyl]-2-oxo-1 λ^2 -indol-3yl]oxy}-oxo- λ^5 -azanylidene)methyl]phosphoryl}oxy)ethylidyne (4w): The reaction was carried out following the general procedure using 1e (31.6 mg, 0.11mmol), 2h (31.5 mg, 0.1mmol) to afford 4w: Yellow solid; 35.5 mg, 68% yield; m.p. 78-79 °C; 92:8 Z/E; [α]_D²⁵ -85.6 (*c* 0.21, CHCl₃); HPLC: Chiralpak AD-H (80:20 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 8.54$ min (major), 20.81 min (minor), 82% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.26 (s, 1H), 7.28 (s, 4H), 7.21 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.87 (t, J = 7.1 Hz, 2H), 6.78 (t, J = 7.5 Hz, 1H), 6.66 (t, J = 7.4 Hz, 1H), 6.40 (d, J = 7.6 Hz, 1H), 6.10 (d, J = 7.4 Hz, 1H), 4.02-3.87 (m, 3H), 3.73-3.63 (m, 1H), 3.18 (d, J = 14.7 Hz, 1H), 2.84 (d, J = 14.6 Hz, 1H), 2.50 (s, 3H), 1.53 (s, 3H), 1.10 (t, J = 7.0 Hz, 3H), 0.99 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.58, 141.29, 139.26, 139.25, 37.78, 131.58, 131.53, 129.94 (d, J = 3.8 Hz), 129.75, 129.23, 126.89, 126.75, 126.67, 125.23, 125.06, 124.22, 121.57, 110.57, 82.64, 63.90 (d, J = 5.9 Hz), 63.57 (d, J = 5.7 Hz), 36.71, 21.52, 19.24, 16.04 (d, J = 6.6 Hz), 15.93 (d, J = 6.8 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.31$; HRMS *m/z* (ESI): Calcd for C₂₈H₃₁N₂O₆P [M+Na]⁺: 545.1818, Found: 545.1817.

2-({Ethoxy[(3-methylphenyl)({[(3R)-3-[(2-methylphenyl)methyl]-2-oxo- $1\lambda^2$ -indol-3yl]oxy}-oxo- λ^5 -azanylidene)methyl]phosphoryl}oxy)ethylidyne (4x): The reaction was carried out following the general procedure using 1f (31.6 mg, 0.11mmol), 2h (31.5 mg, 0.1mmol) to afford 4x: Yellow solid; 37.8 mg, 72% yield; m.p. 42-43 °C; 92:8 Z/E; $[\alpha]_D^{25}$ -74.7 (*c* 0.46, CHCl₃); HPLC: Chiralpak OD-H (80:20 *n*-hexane/*i*-PrOH, 1.0

mL/min, 254 nm, $t_R = 9.55$ min (minor), 11.16 min (major), 90% ee; ¹H NMR (400 MHz, CDCl₃): δ 8.22 (s, 1H), 7.38-7.31 (m, 2H), 7.24-7.17 (m, 3H), 7.02 (t, J = 7.3 Hz, 1H), 6.87 (t, J = 7.4 Hz, 2H), 6.78 (t, J = 7.5 Hz, 1H), 6.68 (t, J = 7.4 Hz, 1H), 6.35 (d, J = 9.3 Hz, 1H), 6.10 (d, J = 7.4 Hz, 1H), 4.02-3.89 (m, 3H), 3.76-3.67 (m, 1H), 3.18 (d, J = 14.7 Hz, 1H), 2.83 (d, J = 14.6 Hz, 1H), 2.44 (s, 3H), 1.52 (s, 3H), 1.10 (t, J = 7.0 Hz, 3H), 1.00 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz), CDCl₃): δ 177.52, 141.24, 138.19, 137.75, 131.56, 131.37, 130.47 (d, J = 4.0 Hz), 130.13, 129.93, 129.74, 129.59, 129.51, 128.50, 127.04 (d, J = 3.9 Hz), 126.90, 125.29, 125.14, 124.17, 121.60, 110.55, 82.59, 63.92 (d, J = 6.0 Hz), 63.65 (d, J = 5.8 Hz), 36.72, 21.43, 19.16, 16.00 (d, J = 6.7 Hz), 15.89 (d, J = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = 5.13$; HRMS *m/z* (ESI): Calcd for C₂₈H₃₁N₂O₆P [M+Na]⁺: 545.1818, Found: 545.1812.

6. References

- 1. C. B. Tripathi, S. Kayal and S. Mukherjee, Org. Lett., 2012, 14, 3296.
- (a) Y.-H. Liao, Z.-J. Wu, W.-Y. Han, X.-M. Zhang and W.-C. Yuan, *Chem. Eur. J.* 2012, 18, 8916; (b) J. Zuo, Y.-H. Liao, X.-M. Zhang and W.-C. Yuan, *J. Org. Chem.* 2012, 77, 11325.
- (a) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding and Y. Wu, *Synlett*, 2005, 603; (b) B. Vakulya, S. Varga, A. Csámpai and T. Soós, *Org. Lett.*, 2005, 7, 1967; (c) T.-Y. Liu, J. Long, B.-J. Li, L. Jiang, R. Li, Y. Wu, L.-S. Ding and Y.-C. Chen, *Org. Biomol. Chem.*, 2006, 4, 2097; (d) T. Okino, Y. Hoashi and Y. Takemoto, *J. Am. Chem. Soc.*, 2003, 125, 12672.
- (a) J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416; (b) Y. Qian, G. Ma, A. Lv, H.-L. Zhu, J. Zhao and V. H. Rawal, Chem. Commun., 2010, 46, 3004; (c) L. Dai, S.-X. Wang and F.-E. Chen, Adv. Synth. Catal. 2010, 352, 2137; (d) Z. Dong, G. Qiu, H.-B. Zhou and C. Dong, Tetrahedron: Asymmetry, 2012, 23, 1550.
- D. Green, S. Elgendy, G. Patel, J. A. Baban, E. Skordalakes, W. Husman, V. V. Kakkar and J. Deadman, *Phosphorus Sulfur*, 1996, 113, 303.

7. NMR Spectra

-10.40

90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	ppm

2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 7.23 7.21 7.21 7.22 6.91 6.89 6.87 6.87 6.87 6.87 6.76 6.76 6.76 $\sum_{2.21}^{2.23}$ 1.22 1.19 1.19 0.99 0.95 7.89 7.26 -OEt ÒEt 7.5 5.5 4.5 4.0 3.5 3.0 2.5 2.0 7.0 6.5 6.0 5.0 1.5 ppm 1.06 0.99 0.87 2.83 1.87 3.00 2.97 1.14 80 141.51 132.53 131.17 130.06 130.03 127.89 127.51 -176.82 -110.64 -110.56 25.31 -63.85 -63.79 -63.36 -63.30 -41.0016.17 16.10 15.93 15.86 15.43 15.43 -82.34 o . Ъ.--OEt ō òEt. 0 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

4a

4f

67

4g

4h

4j

4k

4m

40

-5.39

							k											
45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	ppm

4q

--5.15

90	80	70	60	50	40	30	20	10	·····	-10	-20	-30	-40	-50	-60	-70	-80	

4r

4s

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 ppm

 80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	ppm

4v

1 Det.A Ch1/254nm

			PeakTable	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	10.644	48024910	1699450	91.940
2	15.690	4209884	112998	8.060
Total		52234794	1812448	100.000

A CICCIOI A	CIT 254IIII				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.059	10051436	125699	50.034	58.753
2	21.401	10037942	88244	49.966	41.247
Total		20089378	213943	100.000	100.000

Delector A	CIII 234IIII			
Peak#	Ret. Time	Area	Height	Area %
1	11.490	9848568	151075	9.198
2	19.226	97224681	883562	90.802
Total		107073249	1034637	100.000

Accelor A Chi 254hh				
Peak#	Ret. Time	Area	Height	Area %
1	40.877	33964099	358301	94.059
2	45.895	2145406	20555	5.941
Total		36109506	378856	100.000

65140156

Total

1043957

100.000

reak#	Ket, Thine	Area	neight	Area 70
1	8.524	4543891	92206	9.967
2	13.947	41046585	513528	90.033
Total		45590476	605734	100.000

Delector A	CIII 254IIII			
Peak#	Ret. Time	Area	Height	Area %
1	7.739	41048032	951248	49.872
2	10.225	41258803	844414	50.128
Total		82306835	1795661	100.000

67961387

100.000

Total

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	
1	8.577	10617024	448346	50.068	
2	20.825	10588183	199639	49.932	
Total		21205207	647984	100.000	

1 Det.A Ch1/254nm

	PeakTable				
Detector A	Detector A Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	
1	8.537	50917541	2088605	90.912	
2	20.807	5090123	102368	9.088	
Total		56007665	2190974	100.000	

