SUPPORTING INFORMATION

Gold(I) Complexes with a Phosphinine Ligand: Synthesis and Structural Characterization

Jamal Moussa,* Lise-Marie Chamoreau and Hani Amouri*

General procedures.

All experimental manipulations were carried out under an argon atmosphere by using Schlenk tube techniques. Solvents were dried and distilled under argon by standard procedures. All reagents obtained from commercial sources were used as received. *2,6-diphenyl-4-methylphosphorin* was prepared according to a slightly modified literature procedure.¹ The ¹H, ¹³C and ³¹P NMR spectra were recorded in CD₂Cl₂ using a Bruker Avance 300 NMR spectrometer at 300.13 MHz, 75.47 and 121.45 MHz respectively. IR spectra were recorded on a Bruker Tensor 27 equipped with an ATR Harricks apparatus. UV-Vis. spectra were recorded using a *JASCO V-670* Spectrophotometer. Photoluminescence spectra were recorded using a *JASCO J-815 CD* Spectrometer.

Synthesis of $[AuCl(L_p)]$ (2):

A pale yellow solution of the ligand 2,6-diphenyl-4-methylphosphorin ligand L_p (40 mg, 0.15 mmol) in dichloromethane (10 mL) was added to a colorless solution of [Au(Cl)(tht)] (50 mg, 0.14 mmol) in dichloromethane (10 mL). The resulting pale yellow solution was stirred for 2 hours at room temperature. Then solvent volume was reduced under reduced pressure to c.a. 3 mL and addition of diethyl ether (25 mL) provided a white microcrystalline solid that was washed with two more portions of diethyl ether (15 mL each). The resulting white solid was redissolved in dichloromethane (20 mL) and filtered through celite. Evaporation of dichloromethane under reduced pressure provided [Au(Cl)(*Lp*)] (2) (62 mg, 0.13 mmol) as a white microcrystalline solid. Yield: 90%. Anal. Calcd. (%) for C₁₈H₁₅AuClP·¹/₂CH₂Cl₂ (537.2 g.mol⁻¹): C 41.37, H 3.00; found: C 41.95, H 3.01. ¹H NMR $(300.13 \text{ MHz, CD}_2\text{Cl}_2)$: $\delta = 8.14 \text{ (d, 2 H, }^3J_{\text{H-P}} = 21.9 \text{ Hz, H}_3 + \text{H}_5)$, 7.74 (m, 4 H, Phenyl), 7.55 (m, 6 H, Phenyl), 2.66 (d, 3 H, ${}^{5}J_{H-P} = 6.9$ Hz, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (75.45 MHz, CD₂Cl₂): $\delta = 25.0$ (d, ${}^{4}J_{C-1}$ $_{P}$ = 5.0 Hz, CH₃), 129.5 (d, $^{2}J_{C-P}$ = 12.1 Hz, C₃+C₅), 130.2 (s, Ph), 130.3 (s, Ph) 130.4 (s, Ph), 139.3 (d, $^{2}J_{C-P} = 10.0 \text{ Hz}, C_{ipso} - \text{Ph}), 139.9 \text{ (d, }^{3}J_{C-P} = 11.9 \text{ Hz}, C_{4}), 142.7 \text{ (d, }^{1}J_{C-P} = 27.5 \text{ Hz}, C_{2} + C_{6}) \text{ ppm}.$ NMR (121.47 MHz, CD₂Cl₂): δ = 149.3 (P-Au) ppm. IR (ATR): v = 3046, 1563, 1488, 1447, 1426, 1386, 1372, 1340, 1314, 1162, 1079, 1030, 998, 969, 874, 848, 781, 751, 697, 600, 586, 545, 492, 463, 407, 334, 254, 229, 209 cm⁻¹.

Synthesis of $[Au(L_p)_2](OTf)$ (3):

A pale yellow solution of the ligand 2,6-diphenyl-4-methylphosphorin ligand L_p (40 mg, 0.15 mmol) in dichloromethane (10 mL) was added to a colourless solution of [Au(Cl)(tht)] (25 mg, 0.07 mmol) in dichloromethane (5 mL). The resulting pale yellow solution was stirred for 1 hour at room temperature and was added to a suspension of AgCF₃SO₃ (18 mg, 0.07 mmol) in dichloromethane (5mL), stirring was maintained for 3 hours and the resulting precipitated AgCl was filtered off through

¹ G. Märkl, Angew. Chem. Int. Ed. Engl., 1966, 5, 846-847

celite. Then solvent volume of the filtrate was reduced under reduced pressure to c.a. 2 mL and addition of diethyl ether (20 mL) provided a light yellow microcrystalline solid that was washed with two more portions of diethyl ether (15 mL each). The resulting solid was identified as $[Au(Lp)_2](OTf)$ (3) (51 mg, 0.059 mmol). Yield: 84%. Anal. Calcd. (%) for $C_{37}H_{30}AuF_3O_3P_2S$ (870.1 g.mol⁻¹): C 51.05, H 3.47; found: C 51.16, H 3.71. ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 8.05$ (d, 2 H, ${}^{3}J_{H-P} = 20.1$ Hz, H₃+H₅), 7.51-7.32 (m, 10 H, Phenyl), 2.65 (d, 3 H, ${}^{5}J_{H-P} = 6.6$ Hz, CH₃) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (75.45 MHz, CD₂Cl₂): $\delta = 25.1$ (d, ${}^{4}J_{C-P} = 3.8$ Hz, CH₃), 128.9 (d, ${}^{2}J_{C-P} = 12.8$ Hz, C₃+C₅), 130.2 (s, Ph), 130.3 (s, Ph) 130.5 (s, Ph), 137.6 (d, ${}^{2}J_{C-P} = 12.7$ Hz, C_{*ipso*}-Ph), 141.2 (d, ${}^{3}J_{C-P} = 16.6$ Hz, C₄), 145.1 (d, ${}^{1}J_{C-P} = 21.9$ Hz, C₂+C₆) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (121.47 MHz, CD₂Cl₂): $\delta = 160.5$ (P-Au) ppm. IR (ATR): v = 3055, 1568, 1491, 1446, 1426, 1385, 1289, 1219 1167, 1077, 1021, 967, 873, 761, 744, 697, 628, 605, 573, 549, 515, 464, 407, 336, 313, 269, 259, 233, 204 cm⁻¹.

Tables and Figures.

Table S	1. Experin	nental crys	tallographic	data for	[AuCl(L	(2),
	1	5				

Empirical formula	C ₁₈ H ₁₅ AuClP	-
Formula weight	494.71 g/mol	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P nma	
Unit cell	a =	
dimensions	24.7714(11) Å	
	b =	
	17.0229(7) Å	
	c = 7.5234(3)	
	Å	
	$\alpha = 90^{\circ}$	
	$\beta = 90^{\circ}$	
	$\gamma = 90^{\circ}$	
Volume	3172.5(2) Å ³	
Z	8	
Density	2.071 Mg/m ³	
(calculated)		
Absorption	9.533 mm ⁻¹	
coefficient		
F(000)	1872	
Reflections collected		19125
Independent reflecti	ons	4586, [R(int) = 0.0165]
Final R indices [I>2	sigma(I)]	R1 = 0.0141, $wR2 = 0.0297$
Goodness-of-fit on I	F2	0.906
Largest diff. peak an	nd hole (e.Å-3)	0.529 and -0.993
	. /	

Figure S1. (a) UV-Vis. Absorption spectra in CH_2Cl_2 solutions of ligand L_p (red dotted line), complex $[AuCl(L_p)]$ (2) (green dashed line) and complex $[Au(L_p)_2]$ (OTf) (3) (blue line).

Figure S2. Photoluminescence spectra in PS thin films (2% w/w) of ligand Lp (red dotted line) ($\lambda_{ex}=320 \text{ nm}$), complex [AuCl(L_p)] (2) (green dashed line) and complex [Au(L_p)₂](OTf) (3) (blue line) ($\lambda_{ex}=330 \text{ nm}$).

Figure S3. ¹H NMR spectrum of ligand *Lp* in CD₂Cl₂.

Figure S4. ³¹P NMR spectrum of ligand *Lp* in CD₂Cl₂.

Figure S6. ¹H NMR spectrum of complex $[AuCl(L_p)]$ (2) in CD₂Cl₂.

Figure S7. ³¹P{¹H} NMR spectrum of complex [AuCl(L_p)] (2) in CD₂Cl₂.

Figure S8. ¹³C{¹H} NMR spectrum of complex [AuCl(L_p)] (2) in CD₂Cl₂.

Figure S9. ¹H NMR spectrum of complex $[Au(L_p)_2](OTf)$ (3) in CD₂Cl₂.

Figure S10. ³¹P{¹H} NMR spectrum of complex $[Au(L_p)_2](OTf)$ (3) in CD₂Cl₂.

Figure S11. ¹³C{¹H} NMR spectrum of complex [Au(L_p)₂](OTf) (**3**) in CD₂Cl₂.