From iridoids to dyes: a theoretical study on genipin reactivity - Supporting information

Stefania Di Tommaso¹, Hervé David², Jérôme Gomar², Frédéric Leroy², Carlo Adamo^{1, 3} ¹Laboratoire d'Electrochimie, Chimie des Interfaces et Modélisation pour l'Energie, CNRS UMR 7575, Chimie ParisTech, 11, rue Pierre et Marie Curie, F-75231 Paris Cedex 05 ²L'Oréal Research and Innovation, 1, Avenue Eugène Schueller, 93601 Aulnay-sous-Bois ³Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France

Table S1. Activation enthalpies (ΔH^{\neq} , kcal/mol) and products stabilization (ΔH , kcal/mol) calculated for the water assisted open-ring reaction and tautomerization in gas phase and in solvent (PCM, solvent=ethanol).

	GAS PHASE		SOL	/ENT
REACTION	ΔH≭	ΔН	ΔH≭	ΔН
1→2' (H ₂ O assisted)	16.8	5.6	16.6	5.6
2'→2 (H ₂ O assisted)	19.2	4.1	16.5	2.3

Table S2 and **S3.** Activation barriers (ΔG^{\neq} , kcal/mol) and products stabilization (ΔG , kcal/mol) calculated in the gas phase for each step of the reaction pathway producing **7** and starting from nucleophilic attack of methylamine on genipin in the open-ring form **2** dubbed **C** and **D** in Figure 2. Activation barriers and products stabilizations are also reported for the same reactions catalyzed by one or two water molecules.

REACTIONS	∆G [≠]	ΔG
С	32.1	0.5
$2A \rightarrow 3 + H_2O$	58.7	2.9
+ H ₂ O	29.4	1.6
+ 2 H ₂ O	24.9	3.4
3 → 4	76.5	6.7
+ H ₂ O	30.5	-1.2
+ 2 H ₂ O	27.2	1.4
$4 \rightarrow 5 cis$	33.6	-22.6
+ H ₂ O	3.7	-17.2
+ 2 H ₂ O	2.6	-14.8
5 <i>cis</i> → 7 + H ₂ O + H ₂ O	44.5	3.9

REACTIONS	∆G [≠]	ΔG
D	33.7	4.3
$2A' \rightarrow 3' + H_2O$	49.6	2.0
+ 2 H ₂ O	22.7	0.5
3' → 4'	57.3	3.8
+ 2 H ₂ O	31.2	4.8
4' → 5'cis	23.2	-10.8
+ H ₂ O	5.2	-14.6
+ 2 H ₂ O	3.0	-13.9
5'cis → 7 + H ₂ O + H ₂ O	36.5	5.1

Figure S1. Optimized structure of the transition states involved in the reactions described in the paper.

3 → 4 (+ H₂O) C1-C3=3.05Å N4-H5=1.12Å H5-O6=1.46Å O6-H7=1.31Å C2-H7=1.34Å C2-C3-N4-H5=9.2° N4-H5-O6-H7=-10.3°

	8	5	ĕ
1	9.,		5
	2	3 4	se -
<u>چ</u>			ف

3 → 4 (+ 2H ₂ O)		
C1-C3= 2.95 Å	N4-H5= 1.09 Å	
H5-O6= 1.53 Å	O6-H7=1.10 Å	
H7-O8= 1.36 Å	08-H9= 1.48 Å	
C2-H9=1.22 Å		
C2-C3-N4-H5=6.4°		
N4-H5-O6-H7=-44.1°		
O6-H7-O8-H9=-22.1°		

4 → 5 cis C1-N5= 1.52 Å N5-H6= 1.25 Å O2-H6= 1.42 Å C1-O2-H6= 72.9° C4-N5-H6= 139.8° C3-C4-N5-H6= -122.7°

4 → 5*cis* (+ H₂O) C1-N5= 1.55 Å N5-H6= 1.15 Å H6-O7= 1.42 Å O7-H8= 1.24 Å H8-O2= 1.20 Å C1-O2-H8= 101.4° C4-N5-H6= 116.7° C3-C4-N5-H6= -139.1° C4-N5-H6-O7= 162.6° N5-H6-O7-H8= -18.1°

 $4 \rightarrow 5cis (+ 2H_2O)$ C1-N5= 1.55 Å N5-H6= 1.14 Å H6-O7= 1.41 Å O7-H8= 1.16 Å H8-O9= 1.26 Å O9-H10= 1.26 Å H10-O2= 1.17 Å C1-O2-H10= 109.7° C4-N5-H6= 107.3° C3-C4-N5-H6= -138.3° C4-N5-H6-O7= -167.0° N5-H6-O7-H8= -49.1° H6-O7-H8-O9= -4.5° O7-H8-O9-H10= 16.1°

C1-C2-N3-H6= 105.4°

4' → 5'cis (+ H₂O) C2-N3= 1.44 Å N3-C4= 1.57 Å C4-O5= 1.34 Å O5-H6= 1.21 Å H6-O7= 1.23 Å O7-H8= 1.46 Å N3-H8= 1.12 Å C4-O5-H6= 103.9° C1-C2-N3-H8= 104.2° C2-N3-H8-O7= -133.3° N3-H8-O7-H6= -13.8°

4' → 5'cis (+ 2H₂O) C2-N3=1.45 Å N3-C4= 1.56 Å C4-O5= 1.34 Å O5-H6= 1.15 Å H6-O7= 1.28 Å O7-H8= 1.27 Å H8-O9= 1.15 Å O9-H10= 1.47 Å N3-H10= 1.12 Å C4-O5-H6= 113.4° C1-C2-N3-H10= 98.5° C2-N3-H10-O9= -85.4° N3-H10-O9-H8= -60.9° H10-O9-H8-O7= 0.1° O9-H8-O7-H6= 1.3°

H6-O7= 1.14 Å O7-H8= 1.10 Å H8-O9= 1.43 Å O9-H10= 1.39 Å C2-C3-C4-O5= -85.2° C3-C4-O5-H6= -7.2° C4-O5-H6-O7= 176.5° O5-H6-O7-H8= -144.4° H6-O7-H8-O9= 52.8° O7-H8-O9-H10= -86.5°

Figure S2. UV-visible spectrum simulated (PBE0/6-31+G(d)) for the intermediate 7. Optimized structure of the intermediate and his calculated emission color are also reported.

Figure S3. Orbitals involved in the HOMO-LUMO electronic transition of 8 intermediate.