Synthesis of *anti*- 2, 3-dihydro-1, 2, 3-trisubstituted-1*H*-naphth [1, 2-e][1, 3] oxazine derivatives via multicomponent approach

*Ruli Borah,^a Arup Kumar Dutta,^a Parishmita Sarma,^a Champak Dutta,^a and Bipul Sarma^a

Department of Chemical Sciences, Tezpur University, Napaam-784028, Tezpur-Assam, India

E.mail : ruli@tezu.ernet.in

Supporting Information

Table of Contents	Page No.
(1) Single Crystal XRD Data of <u>6b</u> and <u>6c</u>	2-3
(2) NMR Spectra for Oxazine Product <u>6</u>	4-21
(3) NMR Spectra of <u>23</u> and <u>24</u> Derivatives	22-33

(1) Single Crystal XRD Data of <u>6b</u> and <u>6c</u>

Single crystal X-ray data¹ were collected on a block shaped crystal which solved and refined in the triclinic space group *P-1* with one molecule in the asymmetric unit (Z' = 1) for compound 1 and two molecules for compound 2 (Z' = 2). Reflections were collected at 298 K on Bruker SMART APEX II CCD equipped with a graphite monochromator and Mo-K α fine-focus sealed tube ($\lambda = 0.71073$ Å)¹. Data integration was done using SAINT ². Intensities for absorption were corrected using SADABS. Structure solution and refinement were carried out using Bruker SHELXTL 2008¹. The hydrogen atoms were refined isotropically and the heavy atoms were refined anisotropically. N–H and O–H hydrogens were located from difference electron density maps and C–H hydrogens were fixed using HFIX command in SHELXTL. Crystallographic data are summarized in the table below.

Crystal Data

	<u>6</u> \mathbf{c}^2 [ROFSIP]	<u>6c</u> ^{\$} [This article]	<u>_6b</u>
Chemical formula	C ₂₈ H ₂₇ NO	C ₂₈ H ₂₇ NO	C ₃₃ H ₂₉ NO
Formula weight	393.51	393.51	455.57
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
T (K)	293	296	296
a/Å	8.8959(15)	8.8634 (4)	8.5795 (2)
b/Å	10.7589(16)	10.7499 (5)	15.1441 (4)
c/Å	11.8401(18)	11.8110 (6)	20.1757 (5)
$\alpha/^{\circ}$	96.219(1)	96.088(3)	86.416(2)
β°	98.366(2)	98.252(3)	85.757(2)
γ/°	97.274(2)	97.358(3)	80.379(2)
$V/Å^3$	1102.82	1095.62(9)	2574.10(11)
$D_{\rm calc}/{\rm g~cm^{-3}}$	1.185	1.193	1.176
μ/mm^{-1}	-	0.071	0.070

Table S1: Single crystal data of 6b and 6c

Ζ	2	2	4
$R_1 \left[I > 2 \sigma(I) \right]$	0.0721	0.0478	0.0758
wR ₂	-	0.1377	0.1951
GOF	-	1.064	0.964
Diffractometer	-	BRUKER-	BRUKER-
		APEX-II CCD	APEX-II CCD

Figure S1 ORTEP of redetermined structure of compound <u>6c</u> and newly collected compound <u>6b</u> with 35% probability ellipsoid for non-hydrogen atoms.

Reference

[1] (a) SAINT Plus ,Bruker AXS Inc.: Madison, WI, 2008; (b)BRUKER AXS (v 6.14): Madison,
WI, 2008; (c) Spek, A. L . PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, Netherland, 2002; (d) Spek, A. L. J Appl. Crystallogr.2003, 36, 7. (3) Bruker SHELXTL v2008/4 (Bruker, 2008)

[2] Li, Y. H.; Zhao, M. M.; Zhang, Y .Acta. Cryst , 2008, E64, 01972.

NMR Spectra for Oxazine Product6

[1] <u>6a</u>

1.1 ¹H NMR

1.3. COSY

1.4. NOESY

1.5. HETCOR

abundance 0 1.0		• • • • • • • • • • • • • • • • • • •	PACCESSING DALAMATTERS sinbali(-:60:160 recofil::1 ff::1:TRUE:TRUE pro- sinbali(:-60:160 recofil::2 ff::1:TRUE:TRUE ff::1:TRUE abs b: [transpose]
.0 50.0 40.0 30.0 2			Filename = Arup hmc-2.jdf Author = dalta Esperiment = bmc_2.pfg.es2 Solvent = clickor/come- Creation_time = 1 - 4MAR-2013 14:73:31 Creation_time = 1 - 4MAR-2013 14:73:31 Oursent_time = 6-SHE-2013 11:06:20 Comment = Arup hmc_ Dat_format Dim_size = 519, 512 Dim_size = 118 13C Dim_size = 118 13C Dim_size = 50, 912 Dimensions = X 1 Dim_size = 50, 912 Dimensions = X 1 Dim_size = 50, 900 000
0.0 90.0 80.0 70.0 60			spectrometer = JMP-RL-SAUD Field.strength = 9.39976([](400(MHz]) X.acg_duration = 0.13656064[s] X.acg_duration = 0.13656064[s] X.offnet = 51[ppn] X.offnet = 1024 X.points = 1024 X.prescans = 4 4.227542[Hz] X.acmapi = 7.4982003[kHz] Y.acmapi = 100.52530333[MHz] Y.acmapi = 100.52530333[MHz] Y.acmapi = 100.52530333[MHz] Y.acmapi = 100.52530333[MHz] Y.acmapi = 100.5253033[MHz] Y.acmapi = 100.5253033[MHz] Y.acmapi = 100.5253033[MHz] Y.acmapi = 100.5253033[MHz] Y.acmapi = 100.5253033[MHz] Y.acmapi = 110.55303[MHz] Y.acmapi = 110.5530[MHz] Y.acmapi = 100.5530[MHz] Y.acmapi = 100.5530[MHz] Y.acmap
Y : parts per Million : 13C 0.0 140.0 130.0 120.0 110.0 10	8 3 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8		Trdomain = 14 9, 7221933 [MHz] Tri.offset = 1 Clipped = PALSE Mod_return = 1 Total_scans = 1024 Total_scans = 1024 X_seq_time = 0.1355606(s) X_seq_time = 0.5[00] X_seq_time = 0.5[00] X_seq_time = 0.5[00] Y_seq_time = 0.5[00] Tr_stn.dec = 29.42(d0) Tr_stn.dec = 29.42(d0) Tr_stn.dec = 29.42(d0) Tr_stn.dec = 29.42(d0) Danke_presst = FALSE Danke_presst = FALSE Danke_presst = FALSE Danke_presst = 10.5 Tr_st.dec = 0.5[00] TRUE Grad_1 = 0.5 Tr_st.dec = 0.5 Tr_st.dec = 0.5 Tr
13	8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 -1.0	0 0.2 0.4 0.6 0.8 abundance	Grad_2_amp = 0.18[T/m] Grad_3 = 1[ms] Grad_3_amp = 90.54325956[mT/m] Grad_recover = 0.1[ms]

1.6. DEPT

2.1. ¹H NMR

2.1. 13C NMR

3.1. ¹H NMR

11

3.2. ¹³C-NMR

4.1. $^{1}HNMR$

[4] <u>6d</u>

4.2. ¹³C-NMR

5.1.¹H NMR

5.2. ¹³C-NMR

6.1. ¹H NMR

7.1. ¹H NMR

7.2. ¹³C-NMR

7.3. COSY

7.4. NOESY

1.0. DLI I	7.6.	DEPT
------------	------	------

(3) NMR Spectra of <u>23</u> and <u>24</u> Derivatives

[8] Table-3, entry-5, 23

8.1 1 H NMR

[9] Table-3, entry-5, 24

9.2 ¹H NMR

9.2 ¹³C NMR

[10] Table-3, entry-8, **<u>23</u>**

10.1 ¹H NMR

10.2.¹³C NMR

[11] Table 3, entry-8, <u>24</u>

$11.1.^{1}H$ NMR

[12] Table-3, entry-10, 24

12.1.¹H NMR

12.2¹³C NMR

[13] Table-3, entry-12,24

13.1. ¹HNMR

