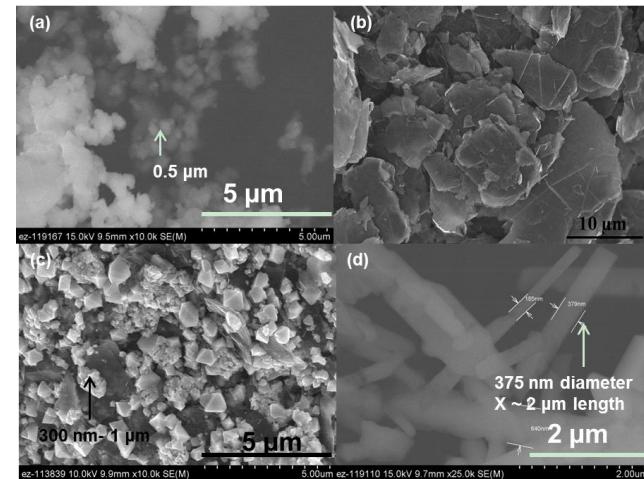
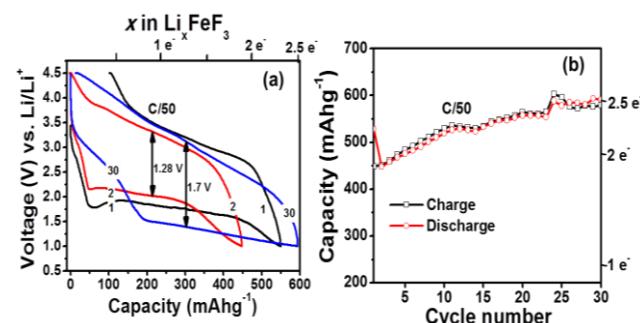
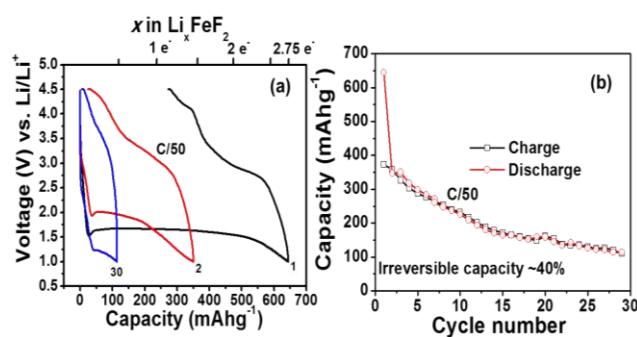


Electrode Architectures for High Capacity Multivalent Conversion Compounds: Iron (II and III) Fluoride


Surendra K. Martha, Jagjit Nanda, Hui Zhou, Juan C. Idrobo, Nancy J. Dudney, Sreekanth Pannala, Sheng Dai, Junjie Wang, Paul. V. Braun

5


Supplementary figures and tables


10 **Figure S1.** Schematics of electrode fabrication process for Iron (II) and (III) fluoride cathodes

15 **Figure S2.** SEM images showing typical shapes and sizes of FeF₂ and FeF₃ particles and electrodes (a) Pristine FeF₃ powder (as received), (b) pristine MLG, (c) pristine FeF₃-after electrode fabrication at 600°C, (d) Pristine FeF₂ powder (as received).

20 **Figure S3.** (a) Voltage vs. capacity profiles of a Li/FeF₃ cell (on carbon fiber) cycled between 1.0 V and 4.5 V (C/50 rate) at 25°C. (b) Capacity plotted as a function of cycle number for the Li/FeF₃ cell.

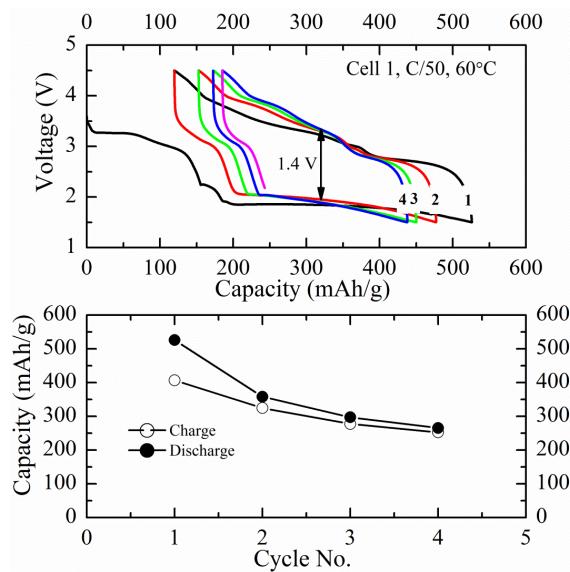


Figure S4. (a) Voltage vs. capacity profiles of a Li/FeF₂ cell (on Al-foil) cycled between 1.0 V and 4.5 V (C/50 rate) at 25°C. (b) Capacity plotted as a function of cycle number for the Li/FeF₂ cell. Electrode Composition: FeF₂ (50%), Graphene (40%), PVDF (10%) on Al foil.

Parameters	1.5 V-4.5V at 25°C	1.0 V-4.5V at 25°C	1.5 V-4.5V at 60°C	2.3 V-4.5V at 25°C	2.3 V-4.5V at 60°C (1.5V cut off)
Irreversible capacity loss (ICL) (%)	7.5	14.5	~25		
1 st cycle lithiation capacity (mAh/g)	465	528	685	35 (1.5V)	175
Highest reversible capacity (mAh/g)	445 (~2 e ⁻¹)	595 (2.5 e ⁻¹)	692 (~3 e ⁻¹)	150 (1.5V) 192 (1.0V)	235 (1 e ⁻¹)
Hysteresis (V)	0.9-1.0	1.3 (2 nd cycle) 1.7 (30 th cycle)	0.8	0.4 (1.5V) 1.5 (1.0V)	0.35
Specific Energy (Wh kg ⁻¹)	990-1010	1060	1650	460 (1.5V) 535 (1.0V)	740

Table S1: Irreversible capacity loss, 1st lithiation capacity, reversible capacity, hysteresis and specific energy of FeF₃ at various cut-off voltages and temperatures.

¹⁰ The electrochemical performance at 60 °C for the slurry coated FeF₃ electrode is shown below in figure S5.

Figure S5 60 °C cycling performance of the FeF₃ slurry coated electrode on Al current collector.