Supporting Information

Reducing the Polyaromatic Hydrocarbons: the Capability and Capacity of Lithium

Swati Panigrahi and G. Narahari Sastry*

Centre for Molecular Modelling CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500607

ContentsPage No.Supporting table I. Binding energy (in kcal/mol) calculated by different quantum2chemical levels for the PAH-Li complex systems.2Supporting figure I. The total interaction energy (IE2) in kcal/mol of the B3LYP/6-331G(d) (a) T-Li (b) A-Li (c) N-Li complexes. The B.E and D.E are in kcal/mol, while the
natural charges are in a.u.4Supporting figure II . All possible B3LYP/6-31G(d) optimized geometry of the mono,
di, tri, tetra and penta lithium anthracene, naphthalene, and benzene complexes. Binding
energy values are given in kcal/mol and the Li... ring centroid distances are given in Å.

Method	B-1A	B-2C	N-1A	N-2A	N-2C	N-2D	N-3C	N-4C
^a MP2/6-31G(d)	-7.60	-48.90	-13.10	-22.39	-64.11	-72.47	-31.44	-65.02
^a B3LYP/cc-pVTZ	-1.84	-48.03	-23.13	-42.54	-63.93	-73.67	-65.61	-42.71
^a M062X/cc-pVTZ	-5.78	-58.07	-30.65	-54.69	-77.33	-88.74	-48.98	-59.16
^a B3LYP/6-311++G(d)	-1.68	-47.61	-23.00	-42.15	-63.58	-73.11	-64.88	-41.73
^a B3LYP/aug-cc-pVDZ	-1.30	-46.32	-22.19	-40.73	-62.29	-71.61	-63.31	-39.83
^a B3PW91/6-31G(d)	-3.48	-47.20	-21.73	-44.37	-63.77	-74.23	-67.70	-44.77
^a MP2/cc-pVTZ	-4.75	-56.30	-19.83	-52.77	-73.37	-97.06	-45.62	-71.14
$^{a}\omega B97XD/6-31G(d)$	-5.64	-49.95	-23.40	-41.92	-68.52	-80.57	-73.97	-43.71
^a B2PLYP/6-311++G(d)	-3.27	-49.08	-21.94	-44.25	-65.06	-74.16	-68.64	-52.14
^b B3LYP/6-31G(d)	-5.78	-49.19	-18.47	-41.44	-57.40	-69.14	-62.32	-54.81

Supporting table I. Binding energy (in kcal/mol) calculated by different quantum chemical levels for the PAH-Li complex systems..

^a Energy calculated on the MP2/6-31G(d) geometries

^b Energy calculated on the B3LYP/6-31G(d) geometries

Supporting figure I. The total interaction energy (IE2) in kcal/mol of the B3LYP/6-31G(d) (a) T-Li (b) A-Li (c) N -Li complexes. The B.E and D.E are in kcal/mol, while the natural charges are in a.u.

Supporting figure II. All possible B3LYP/6-31G(d) optimized geometry of the mono, di, tri, tetra and penta lithium anthracene, naphthalene, and benzene complexes. Binding energy values are given in kcal/mol and the Li... ring centroid distances are given in Å.