Supporting Information for

Colloidosomes from Poly(N-vinyl-2-pyrrolidone)-coated Poly(N-iso propylacrylamide-co-acrylic acid) Microgels via UV Crosslinking

Yi Gong, Ai Mei Zhu, Qiu Gen Zhang and Qing Lin Liu *

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China.

Figures

Figure S1 FTIR of the samples prepared at different AAc contents.

Figure S2 Zeta potentials of the P(NIPAM-co-AAc) microgels and PVP in different pH solutions.

Figure S3 FTIR of different samples: P(NIPAM-co-AAc) microgels before PVP coating (a), P(NIPAM-co-AAc) microgels after PVP coating with AAc content of 10% (b) and 15% (c). Figure S4 Relationship between the temperature and absorbance of the colloidosomes (1 mg/ml) in PBS (pH =7.4) solution.

Figure S1 FTIR of the samples prepared at different AAc contents.

The peaks of isopropyl in FTIR spectra are strong specific double peaks around 1366 and

1386 cm⁻¹ which can be found in all the samples. The characteristic peak of C=O around 1710 cm⁻¹ can be detected only in the microgels prepared with 10% and 15% AAc contents.

Figure S2 Zeta potentials of the P(NIPAM-co-AAc) microgels and PVP in different pH solutions.

Figure S3 FTIR of different samples: (a) P(NIPAM-co-AAc) microgels before PVP coating, P(NIPAM-co-AAc) microgels after PVP coating with AAc content of (b) 10% and (c)15%.

Figure S4 Relationship between the temperature and absorbance of the colloidosomes (1 mg/ml) in PBS (pH = 7.4) solution. The Absorbance was recorded at 660 nm using a Shimazu UV-1800 spectrofluorometer.